1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Theoretical analysis of carrier mobility in organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/23/10.1063/1.3599485
1.
1.M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.973
2.
2.S. Fratini and S. Ciuchi, Phys. Rev. Lett. 103, 266601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.266601
3.
3.J. A. Letizia, J. Rivnay, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Funct. Mater. 20, 50 (2010).
http://dx.doi.org/10.1002/adfm.200900831
4.
4.T. Sakanoue and H. Sirringhaus, Nature Mater. 9, 736 (2010).
http://dx.doi.org/10.1038/nmat2825
5.
5.L. Li, K. -S. Chung, and J. Jang, Appl. Phys. Lett. 98, 023305 (2011).
http://dx.doi.org/10.1063/1.3543900
6.
6.G. Horowitz and P. Delannoy, J. Appl. Phys. 70, 469 (1991).
http://dx.doi.org/10.1063/1.350250
7.
7.N. F. Mott and E. A. Davis, Electronic Process in Non-Crystalline Materials (Clarendon, Oxford, 1979).
8.
8.G. Ghibaudo, D. Tsamakis, C. Papatriantafillou, G. Kamarinos, and E. Rokofillou, J. Phys. C 16, 4479 (1983).
http://dx.doi.org/10.1088/0022-3719/16/22/020
9.
9.Y. Xu, M. Benwadih, R. Gwoziecki, R. Coppard, T. Minari, C. Liu, K. Tsukagoshi, J. A. Chroboczek, F. Balestra, and G. Ghibaudo, “A transport study of carrier mobility in organic field-effect transistors,” J. Appl. Phys. (submitted).
10.
10.Y. Roichman and N. Tessler, Appl. Phys. Lett. 80, 1948 (2002).
http://dx.doi.org/10.1063/1.1461419
11.
11.Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, and G. Ghibaudo, J. Appl. Phys. 107, 114507 (2010).
http://dx.doi.org/10.1063/1.3432716
12.
12.M. C. J. M. Vissenberg and M. Matters, Phys. Rev. B 57, 12964 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.12964
13.
13.S. F. Nelson, Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).
http://dx.doi.org/10.1063/1.121205
14.
14.G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
http://dx.doi.org/10.1063/1.373091
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/23/10.1063/1.3599485
Loading
/content/aip/journal/apl/98/23/10.1063/1.3599485
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/23/10.1063/1.3599485
2011-06-08
2014-12-19

Abstract

A theoretical analysis of the carrier mobility in organic transistors is presented. We noticed that the assumption of zero potential at open/quasi-free surface may cause a large deviation of the areal charge density in the organic film, greater in thinner-film transistors. Taking into account this effect, the effective mobility is obtained using the Kubo–Greenwood integral, which provides the total conductivity in the band and thus in the whole organic film. The mobility is studied with respect to gate voltage and temperature, for various disorder and transport diffusivity levels, enabling a better insight of the carrier mobility in organic transistors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/23/1.3599485.html;jsessionid=9rr74hn8075e1.x-aip-live-06?itemId=/content/aip/journal/apl/98/23/10.1063/1.3599485&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theoretical analysis of carrier mobility in organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/23/10.1063/1.3599485
10.1063/1.3599485
SEARCH_EXPAND_ITEM