1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Charge trapping process of nonvolatile memory devices based on CdTe and CdTe–CdSe core-shell nanoparticles/poly(methylmethacrylate) nanocomposites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/24/10.1063/1.3596705
1.
1.L. P. Ma, J. Liu, S. M. Pyo, and Y. Yang, Appl. Phys. Lett. 80, 362 (2002).
http://dx.doi.org/10.1063/1.1436274
2.
2.S. Sahu, S. K. Majee, and A. J. Pal, Appl. Phys. Lett. 91, 143108 (2007).
http://dx.doi.org/10.1063/1.2793617
3.
3.J. C. Scott and L. D. Bozano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.200602564
4.
4.B. C. de Brito, E. C. P. Smits, P. A. van Hal, T. C. T. Geuns, B. de Boer, C. J. M. Lasance, H. L. Gomes, and D. M. de Leeuw, Adv. Mater. (Weinheim, Ger.) 20, 3750 (2008).
http://dx.doi.org/10.1002/adma.200800960
5.
5.S. H. Song, B. J. Cho, T. W. Kim, Y. S. Ji, M. S. Jo, G. U. Wang, M. H. Choe, Y. H. Kahng, H. S. Hwang, and T. H. Lee, Adv. Mater. (Weinheim, Ger.) 22, 5048 (2010).
http://dx.doi.org/10.1002/adma.201002575
6.
6.A. K. Cuentas-Gallegos, M. Lira-Cantú, N. Casañ-Pastor, and P. Gómez-Romero, Adv. Funct. Mater. 15, 1125 (2005).
http://dx.doi.org/10.1002/adfm.200400326
7.
7.J. H. Ham, D. H. Oh, S. H. Cho, J. H. Jung, T. W. Kim, E. D. Ryu, and S. W. Kim, Appl. Phys. Lett. 94, 112101 (2009).
http://dx.doi.org/10.1063/1.3097805
8.
8.H. Liu, D. A. Ferrer, F. Ferdousi, and S. K. Banerjee, Appl. Phys. Lett. 95, 203112 (2009).
http://dx.doi.org/10.1063/1.3258471
9.
9.B. Li, J. J. Ren, and J. L. Liu, Appl. Phys. Lett. 96, 172104 (2010).
http://dx.doi.org/10.1063/1.3421546
10.
10.F. Li, T. Guo, and T. W. Kim, Appl. Phys. Lett. 97, 062104 (2010).
http://dx.doi.org/10.1063/1.3479528
11.
11.W. Lu and C. M. Lieber, Nature Mater. 6, 841 (2007).
http://dx.doi.org/10.1038/nmat2028
12.
12.Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, Nano Lett. 8, 386 (2008).
http://dx.doi.org/10.1021/nl073224p
13.
13.C. J. Kim, S. J. Choi, S. W. Ryu, S. H. Kim, J. J. Chang, S. H. Bae, B. H. Sohn, and Y. K. Choi, Nanotechnology 21, 125202 (2010).
http://dx.doi.org/10.1088/0957-4484/21/12/125202
14.
14.D. Y. Yun, J. H. Jung, D. U. Lee, T. W. Kim, E. D. Ryu, and S. W. Kim, Appl. Phys. Lett. 96, 123302 (2010).
http://dx.doi.org/10.1063/1.3360215
15.
15.H. J. Seo and S. W. Kim, Chem. Mater. 19, 2715 (2007).
http://dx.doi.org/10.1021/cm070209c
16.
16.H. J. Seo and S. W. Kim, Bull. Korean Chem. Soc. 28, 1637 (2007).
http://dx.doi.org/10.5012/bkcs.2007.28.10.1637
17.
17.J. Heitmann, F. Müller, M. Zacharias, and U. Gösele, Adv. Mater. (Weinheim, Ger.) 17, 795 (2005).
http://dx.doi.org/10.1002/adma.200401126
18.
18.C. H. Chuang, S. Lo Shun, G. D. Scholes, and C. Burda, J. Phys. Chem. Lett. 1, 2530 (2010).
http://dx.doi.org/10.1021/jz1008399
19.
19.H. Lee, S. W. Yoon, J. P. Ahn, Y. D. Suh, J. S. Lee, H. Lim, and D. Kim, Sol. Energy Mater. Sol. Cells 93, 779 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.09.050
20.
20.J. A. Hagen, W. Li, A. J. Stechl, and J. G. Grote, Appl. Phys. Lett. 88, 171109 (2006).
http://dx.doi.org/10.1063/1.2197973
21.
21.D. I. Son, D. H. Park, W. K. Choi, S. H. Cho, W. T. Kim, and T. W. Kim, Nanotechnology 20, 195203 (2009).
http://dx.doi.org/10.1088/0957-4484/20/19/195203
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/24/10.1063/1.3596705
Loading
/content/aip/journal/apl/98/24/10.1063/1.3596705
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/24/10.1063/1.3596705
2011-06-15
2014-10-01

Abstract

Nonvolatile memory devices based on CdTe and CdTe–CdSe core-shell nanoparticles embedded in a poly(methylmethacrylate) (PMMA) layer were fabricated to investigate the variation in the carrier transport mechanisms due to a CdSe shell. Capacitance-voltage (C-V) curves for Al/CdTe nanoparticles embedded in PMMA/ and Al/CdTe–CdSe nanoparticles embedded in PMMA/ devices at 300 K showed that the flatband voltage shift of the C-V curve for the device with the CdTe–CdSe nanoparticles was relatively smaller than that for the device with the CdTenanoparticle. Carrier transport mechanisms of the memory devices are described by using the C-V results, energy band diagrams, and capacitance-time retentions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/24/1.3596705.html;jsessionid=h3qg78q7rp6r.x-aip-live-06?itemId=/content/aip/journal/apl/98/24/10.1063/1.3596705&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Charge trapping process of nonvolatile memory devices based on CdTe and CdTe–CdSe core-shell nanoparticles/poly(methylmethacrylate) nanocomposites
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/24/10.1063/1.3596705
10.1063/1.3596705
SEARCH_EXPAND_ITEM