1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/98/24/10.1063/1.3598426
1.
1.H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Nat. Photonics 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
2.
2.C. L. Uhrich, G. Schwartz, B. Maennig, W. M. Gnehr, S. Sonntag, O. Erfurth, E. Wollrab, K. Walzer, J. Foerster, A. Weiss, O. Tsaryova, K. Leo, M. K. Riede, and M. Pfeiffer, in Organic Photonics IV, edited by P. L. Heremans, R. Coehoorn, and C. Adachi (SPIE-International Society for Optical Engineering, Bellingham, 2010), Vol. 7722.
3.
3.P. Peumans, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).
http://dx.doi.org/10.1063/1.126433
4.
4.M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 89, 163515 (2006).
http://dx.doi.org/10.1063/1.2362974
5.
5.D. Gebeyehu, M. Pfeiffer, B. Maennig, J. Drechsel, A. Werner, and K. Leo, Thin Solid Films 451–452, 29 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.10.087
6.
6.B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N. S. Sariciftci, I. Riedel, V. Dyakonov, and J. Parisi, Appl. Phys. A: Mater. Sci. Process. 79, 1 (2004).
http://dx.doi.org/10.1007/s00339-003-2494-9
7.
7.B. P. Rand, J. Li, J. G. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, Adv. Mater. (Weinheim, Ger.) 17, 2714 (2005).
http://dx.doi.org/10.1002/adma.200500816
8.
8.K. Suemori, T. Miyata, M. Yokoyama, and M. Hiramoto, Appl. Phys. Lett. 85, 6269 (2004).
http://dx.doi.org/10.1063/1.1840126
9.
9.K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 128, 8108 (2006).
http://dx.doi.org/10.1021/ja061655o
10.
10.A. Kahn, N. Koch, and W. Y. Gao, J. Polym. Sci., Part B: Polym. Phys. 41, 2529 (2003).
http://dx.doi.org/10.1002/polb.10642
11.
11.P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
http://dx.doi.org/10.1063/1.1384001
12.
12.F. Yang, K. Sun, and S. R. Forrest, Adv. Mater. (Weinheim, Ger.) 19, 4166 (2007).
http://dx.doi.org/10.1002/adma.200700837
13.
13.L. Hall, S. Wang, V. V. Diev, G. Wei, X. Xiao, P. I. Djurovich, S. R. Forrest, M. E. Thompson (unpublished).
14.
14.G. D. Wei, R. R. Lunt, K. Sun, S. Y. Wang, M. E. Thompson, and S. R. Forrest, Nano Lett. 10, 3555 (2010).
http://dx.doi.org/10.1021/nl1018194
15.
15.S. R. Forrest, Chem. Rev. 97, 1793 (1997).
http://dx.doi.org/10.1021/cr941014o
16.
16.American Society for Testing and Materials, Standards Nos. E1021, E948, and E973.
17.
17.V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006).
http://dx.doi.org/10.1002/adfm.200600489
18.
18.N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82, 155305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155305
19.
19.B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115327
20.
20.L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
21.
21.C. Falkenberg, C. Uhrich, S. Olthof, B. Maennig, M. K. Riede, and K. Leo, J. Appl. Phys. 104, 034506 (2008).
http://dx.doi.org/10.1063/1.2963992
22.
22.I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000).
http://dx.doi.org/10.1016/S1566-1199(00)00002-1
23.
23.N. J. Watkins, G. P. Kushto, and A. J. Makinen, J. Appl. Phys. 104, 013712 (2008).
http://dx.doi.org/10.1063/1.2952055
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/24/10.1063/1.3598426
Loading
/content/aip/journal/apl/98/24/10.1063/1.3598426
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/24/10.1063/1.3598426
2011-06-15
2015-08-29

Abstract

We demonstrate that 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) can function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. A low-resistance contact is provided by PTCBI, while NTCDA acts as an exciton blocking layer and optical spacer. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure in a functionalized-squaraine/-based device, we obtain a spectrally corrected power conversion efficiency of under 1 sun, AM 1.5G simulated solar illumination, an improvement of compared to an analogous device using a conventional bathocuproine layer that has previously been shown to conduct electrons via damage-induced midgap states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/24/1.3598426.html;jsessionid=25bmbgldefv9q.x-aip-live-02?itemId=/content/aip/journal/apl/98/24/10.1063/1.3598426&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Organic photovoltaics incorporating electron conducting exciton blocking layers
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/24/10.1063/1.3598426
10.1063/1.3598426
SEARCH_EXPAND_ITEM