1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Effect of air exposure on metal/organic interface in organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/24/10.1063/1.3599056
1.
1.B. Crone, A. Dodabalapur, Y. -Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature (London) 403, 521 (2000).
http://dx.doi.org/10.1038/35000530
2.
2.A. N. Sokolov, M. E. Roberts, and Z. Bao, Mater. Today 12, 12 (2009).
http://dx.doi.org/10.1016/S1369-7021(09)70247-0
3.
3.Y. Guo, G. Yu, and Y. Liu, Adv. Mater. (Weinheim, Ger.) 22, 4427 (2010).
http://dx.doi.org/10.1002/adma.201000740
4.
4.E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van Veenendaal, D. M. de Leeuw, and T. M. Klapwijk, J. Appl. Phys. 93, 4831 (2003).
http://dx.doi.org/10.1063/1.1559933
5.
5.S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, and K. Yase, J. Appl. Phys. 95, 5088 (2004).
http://dx.doi.org/10.1063/1.1691190
6.
6.A. Benor, A. Hoppe, V. Wagner, and D. Knipp, Org. Electron. 8, 749 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.005
7.
7.G. Horowitz, X. Peng, D. Fichou, and F. Garnier, J. Appl. Phys. 67, 528 (1990).
http://dx.doi.org/10.1063/1.345238
8.
8.O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. 87, 052102 (2005).
http://dx.doi.org/10.1063/1.2001130
9.
9.A. J. Bard, R. Parsons, and J. Jordan, Standard Potential in Aqueous Solutions (Marcel Dekker, New York, 1985).
10.
10.S. Scheinert and G. Paasch, Phys. Status Solidi A 201, 1263 (2004).
http://dx.doi.org/10.1002/pssa.200404335
11.
11.T. Miyadera, T. Minari, K. Tsukagoshi, H. Ito, and Y. Aoyagi, Appl. Phys. Lett. 91, 013512 (2007).
http://dx.doi.org/10.1063/1.2754350
12.
12.T. Takano, H. Yamauchi, M. Iizuka, M. Nakamura, and K. Kudo, Appl. Phys. Express 2, 071501 (2009).
http://dx.doi.org/10.1143/APEX.2.071501
13.
13.V. Wagner, P. Wöbkenberg, A. Hoppe, and J. Seekamp, Appl. Phys. Lett. 89, 243515 (2006).
http://dx.doi.org/10.1063/1.2405414
14.
14.S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 91, 203508 (2007).
http://dx.doi.org/10.1063/1.2813640
15.
15.J. -W. Park, K. -J. Baeg, J. Ghim, S. -J. Kang, J. -H. Park, and D. -Y. Kimz, Electrochem. Solid-State Lett. 10, H340 (2007).
http://dx.doi.org/10.1149/1.2774683
16.
16.C. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu, and D. Zhu, Adv. Mater. (Weinheim, Ger.) 20, 1286 (2008).
http://dx.doi.org/10.1002/adma.200701812
17.
17.T. Matsushima, Y. Kinoshita, and H. Murata, Appl. Phys. Lett. 91, 253504 (2007).
http://dx.doi.org/10.1063/1.2825275
18.
18.M. Kano, T. Minari, and K. Tsukagoshi, Appl. Phys. Lett. 94, 143304 (2009).
http://dx.doi.org/10.1063/1.3115826
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/24/10.1063/1.3599056
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) A schematic diagram of the MIS capacitor and the OFETs fabricated in the present study. (b) Transfer characteristics of OFET with Cu source/drain electrodes under in situ and after ambient air exposure of 1 and 17 h. (c) Plot of total on resistance of the Cu OFET under in situ and after air exposure of 1 and 17 h as a function of the channel length. The contact resistances were extracted from y-intercept of the fitting lines.

Image of FIG. 2.

Click to view

FIG. 2.

The measured CV curves of the MIS capacitors under various environment conditions: (a) Au electrode under in situ condition. (b) Au electrode after air exposure for 1 h. (c) Au electrode after air exposure for 17 h. (d) Cu electrode under in situ condition. (e) Cu electrode after air exposure for 1 h. (f) Cu electrode after air exposure for 17 h.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The frequency dependence of capacitance measured for Au OFET after air exposure for 17 h. (b) The impact of ambient air exposure on the cutoff frequency values of Au OFETs. (c) The impact of ambient air exposure on the cutoff frequency values of Cu OFETs. (d) A direct comparison of values between Au OFET and Cu OFET under in situ and after air exposure for 17 h.

Image of FIG. 4.

Click to view

FIG. 4.

(a) PYS spectra of vacuum-deposited Cu films before and after air exposure. (b) Schematic energy diagram of Cu/pentacene under in situ condition. (c) Energy diagram of the interface between naturally oxidized Cu and pentacene.

Loading

Article metrics loading...

/content/aip/journal/apl/98/24/10.1063/1.3599056
2011-06-13
2014-04-20

Abstract

We report the effect of air exposure on charge injection process through the metal/organic interface in organic field-effect transistors. Pentacene-based field-effect transistors and metal-insulator-semiconductor capacitors having gold or copper contact were fabricated without exposing to air. An air exposure caused remarkable improvement on the electrical characteristics of the devices, particularly on the contact resistance and frequency response characteristics. Measurements of photoelectron yield spectroscopy revealed that natural oxidation significantly shifted the work function of contact metal and thus charge injection efficiency was improved. This result provides critical insights on control of desirable metal/organic interface in organic electronics devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/24/1.3599056.html;jsessionid=5l49occgtnk5i.x-aip-live-02?itemId=/content/aip/journal/apl/98/24/10.1063/1.3599056&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of air exposure on metal/organic interface in organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/24/10.1063/1.3599056
10.1063/1.3599056
SEARCH_EXPAND_ITEM