1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
How the surface energy of ultra-thin CuF2 film as anode buffer layer affect the organic light-emitting devices?
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/26/10.1063/1.3604399
1.
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51(12), 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65(9), 3610 (1989).
http://dx.doi.org/10.1063/1.343409
3.
3. S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69(15), 2160 (1996).
http://dx.doi.org/10.1063/1.117151
4.
4. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70(2), (1997).
http://dx.doi.org/10.1063/1.118344
5.
5. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, and M. Wang, J. Appl. Phys. 86(3), (1999).
http://dx.doi.org/10.1063/1.370948
6.
6. H. M. Zhang and W. C. H. Choy, IEEE Trans. Electron Devices 55(9), (2008).
7.
7. H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys. 101(2), 026105 (2009).
http://dx.doi.org/10.1063/1.2430511
8.
8. H. Huang, S. Chu, P. Kao, Y. Chen, M. Yang, and Z. Tseng, J. Alloys Compd. 479(1-2), 520 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.12.122
9.
9. D.-D. Zhang, J. Feng, Y.-F. Liu, Y.-Q. Zhong, Y. Bai, Y. Jin, G.-H. Xie, Q. Xue, Y. Zhao, S.-Y. Liu, and H.-B. Sun, Appl. Phys. Lett. 94(22), 223306 (2009).
http://dx.doi.org/10.1063/1.3148657
10.
10. S. Y. Kim and J.-L. Lee, Appl. Phys. Lett. 87(23), 232105 (2005).
http://dx.doi.org/10.1063/1.2135874
11.
11. H.-H. Huang, S.-Y. Chu, P.-C. Kao, and Y.-C. Chen, Thin Solid Films 516 (16), 5664 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.081
12.
12. H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, and R.-C. Chang, J. Electrochem. Soc. 154(3), J105 (2007).
http://dx.doi.org/10.1149/1.2432075
13.
13. Y.-G. Chen, P.-C. Kao, and S.-Y. Chu, Opt. Express 18, A167 (2010).
http://dx.doi.org/10.1364/OE.18.00A167
14.
14. S. So, W. Choi, C. Cheng, L. Leung, and C. Kwong, Appl. Phys. A: Mater. Sci. Process. 68(4), 447 (1999).
http://dx.doi.org/10.1007/s003390050921
15.
15. ZZ. You, Mater. Lett. 61(18), 3809 (2007).
http://dx.doi.org/10.1016/j.matlet.2006.12.063
16.
16. J. Kim, R. Friend, and F. Cacialli, J. Appl. Phys. 86, 2774 (1999).
http://dx.doi.org/10.1063/1.371124
17.
17. J. Kim, P. Ho, D. Thomas, R. Friend, F. Cacialli, G. Bao, and S. Li, Chem. Phys. Lett. 315 (5-6), 307 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01233-6
18.
18. C. Yi, C. Jeong, Y. Lee, Y. Ko, and G. Yeom, Surf. Coat. Technol. 177, 711 (2004).
http://dx.doi.org/10.1016/j.surfcoat.2003.08.011
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.3604399 for parameters and data aiding readers to understand our conclusions. [Supplementary Material]
20.
20. Z. H. Kafafi, Organic Electroluminescence (CRC, 2005).
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/26/10.1063/1.3604399
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Current density-voltage and (b) luminance-voltage characteristics for OLEDs with a CuF2 ultra-thin buffer layer of varying thickness as stated. Device structure was ITO/CuF2(2-5 nm)/NPB(40 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm).

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) UPS results for a bare ITO substrate, and pristine CuF2 and UV-ozone treated CuF2 layers deposited on an ITO substrate. The inset shows an energy band diagram.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online)Surface energy of a bare ITO substrate, and pristine CuF2 and UV-ozone treated CuF2 layers deposited on an ITO substrate. The inset shows the polarity of the three samples.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) XPS spectra of the Cu 2p3/2 region for a CuF2 film deposited on an ITO substrate before and after UV-ozone treatment.

Loading

Article metrics loading...

/content/aip/journal/apl/98/26/10.1063/1.3604399
2011-06-28
2014-04-18

Abstract

The effect of surface energy on organic light-emitting device performance was demonstrated by depositing an ultra-thin CuF2buffer layer on indium tin oxide (ITO) substrates, followed by ultraviolet (UV)-ozone treatment. An optimal thickness UV-ozone treated CuF2 (4 nm)/ITO anode significantly improved device performance. Work function estimates from X-ray photoelectron measurements suggested that both pristine and UV-ozone treated CuF2/ITO anodes had no hole injection barrier. Measurements of energy band, surface energy and surface polarity indicated device improvement came from the simultaneous increase in work function and surface energy of ITO by adding treated CuF2film between ITO and the hole-transporting layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/26/1.3604399.html;jsessionid=2ftis7nwc0hfv.x-aip-live-06?itemId=/content/aip/journal/apl/98/26/10.1063/1.3604399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: How the surface energy of ultra-thin CuF2 film as anode buffer layer affect the organic light-emitting devices?
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/26/10.1063/1.3604399
10.1063/1.3604399
SEARCH_EXPAND_ITEM