1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Evolution of the surface morphology of rubrene under ambient conditions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/5/10.1063/1.3551624
1.
1.V. Coropceanu, J. Cornil, D. da Silva Filho, Y. Olivier, R. Silbey, and J. Bredas, Chem. Rev. (Washington, D.C.) 107, 926 (2007).
http://dx.doi.org/10.1021/cr050140x
2.
2.J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).
http://dx.doi.org/10.1063/1.2711393
3.
3.V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. Rogers, and M. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
4.
4.K. Zhang, K. Tan, C. Zou, M. Wikberg, L. McNeil, S. Mhaisalkar, and C. Kloc, Org. Electron. 11, 1928 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.08.019
5.
5.H. Najafov, B. Lee, Q. Zhou, L. Feldman, and V. Podzorov, Nature Mater. 9, 938 (2010).
http://dx.doi.org/10.1038/nmat2872
6.
6.L. Miozzo, A. Yassar, and G. Horowitz, J. Mater. Chem. 20, 2513 (2010).
http://dx.doi.org/10.1039/b922385a
7.
7.B. Lee, T. Choi, S. Cheong, and V. Podzorov, Adv. Funct. Mater. 19, 3726 (2009).
http://dx.doi.org/10.1002/adfm.200901525
8.
8.A. Maliakal, J. Chen, W. So, S. Jockusch, B. Kim, M. Ottaviani, A. Modelli, N. Turro, C. Nuckolls, and A. Ramirez, Chem. Mater. 21, 5519 (2009).
http://dx.doi.org/10.1021/cm902699s
9.
9.O. Mitrofanov, D. Lang, C. Kloc, J. Wikberg, T. Siegrist, W. So, M. Sergent, and A. Ramirez, Phys. Rev. Lett. 97, 166601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.166601
10.
10.O. Mitrofanov, C. Kloc, T. Siegrist, D. Lang, W. So, and A. Ramirez, Appl. Phys. Lett. 91, 212106 (2007).
http://dx.doi.org/10.1063/1.2815939
11.
11.X. Song, L. Wang, Q. Fan, Y. Wu, H. Wang, C. Liu, N. Liu, J. Zhu, D. Qi, X. Gao, and A. T. S. Wee, Appl. Phys. Lett. 97, 032106 (2010).
http://dx.doi.org/10.1063/1.3466914
12.
12.C. Krellner, S. Haas, C. Goldmann, K. Pernstich, D. Gundlach, and B. Batlogg, Phys. Rev. B 75, 245115 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245115
13.
13.M. Kytka, A. Gerlach, F. Schreiber, and J. Kovac, Appl. Phys. Lett. 90, 131911 (2007).
http://dx.doi.org/10.1063/1.2717561
14.
14.C. Kloc, K. Tan, M. Toh, K. Zhang, and Y. Xu, Appl. Phys. A: Mater. Sci. Process. 95, 219 (2009).
http://dx.doi.org/10.1007/s00339-008-5014-0
15.
15.R. Laudise, C. Kloc, P. Simpkins, and T. Siegrist, J. Cryst. Growth 187, 449 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00034-7
16.
16.T. Minato, H. Aoki, H. Fukidome, T. Wagner, and K. Itaya, Appl. Phys. Lett. 95, 093302 (2009).
http://dx.doi.org/10.1063/1.3184770
17.
17.E. Menard, A. Marchenko, V. Podzorov, M. Gershenson, D. Fichou, and J. Rogers, Adv. Mater. 18, 1552 (2006).
http://dx.doi.org/10.1002/adma.200502569
18.
18.Y. Wakabayashi, J. Takeya, and T. Kimura, Phys. Rev. Lett. 104, 066103 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.066103
19.
19.S. Machida, Y. Nakayama, S. Duhm, Q. Xin, A. Funakoshi, N. Ogawa, S. Kera, N. Ueno, and H. Ishii, Phys. Rev. Lett. 104, 156401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.156401
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/5/10.1063/1.3551624
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Topographic AFM images (tapping mode) of single-crystal rubrene surfaces; (a) a freshly cleaved sample showing three molecular terraces, (b) an as-grown sample 2 weeks after growth, and (c) an as-grown sample approximately 3 yr after growth. The color scale (black to white) is 10, 13, and 400 nm for (a), (b), and (c) respectively. The samples were all stored and imaged in ambient conditions.

Image of FIG. 2.

Click to view

FIG. 2.

Bead formation after cleaving for several samples shown as the bead height vs time. Average bead height is evaluated using topographic AFM images; error bars show one standard deviation taken over a sample size of approximately 50. Blue triangles correspond to the sample shown in insets (a)–(d): (a) 1 h after cleaving, (b) 1 day after cleaving, (c) 7 days after cleaving, and (d) 11 months after cleaving. The color scale (black to white) is 10, 13, 45, and 150 nm for images (a), (b), (c), and (d), respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Topographic AFM images (tapping mode) showing the change in surface morphology of a rubrene surface (a) 4.5, (b) 5.5, and (c) 6.5 weeks and (d) 11 months after cleaving. Images (f) and (g) are enlargements of the same area indicated in (b) and (d), respectively. The color scale (black to white) for images (a) and (b) is 13 nm, that for (c) and (d) is 17 nm, and that for (f) and (g) is 20 nm. Schematic (e) shows the crystallographic directions and and the orientation of rubrene molecules.

Image of FIG. 4.

Click to view

FIG. 4.

Rubrene surface 2 months after cleaving: (a) topographic AFM image (contact mode) with a color scale (black to white) of 100 nm, (b) C-AFM image of the same area as (a) with a color scale (black to white) range of 200 pA. (c) and (d) show a topographic image and a C-AFM map, respectively, near a step edge, highlighted in (c) for ease of identification. (e) and (f) show topographic and conduction profiles, respectively, of the indicated paths in (c) and (d).

Loading

Article metrics loading...

/content/aip/journal/apl/98/5/10.1063/1.3551624
2011-02-03
2014-04-24

Abstract

Evolution of the surface morphology and local conductivity on cleaved surfaces of rubrene single crystals is characterized with atomic force microscopy. The cleaved surface was found to exhibit molecular reorganization that results in the formation of nanoscale beads aligned along molecular step edges and fingers, narrow molecular structures, one molecule high, and in excess of long. The beads show insulating behavior and a band bending effect on the surface nearby. Their formation has a strong environmental dependence, which has implications for the operation of rubrene field-effect transistors in the ambient environment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/5/1.3551624.html;jsessionid=toerb8d4pe4g.x-aip-live-06?itemId=/content/aip/journal/apl/98/5/10.1063/1.3551624&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Evolution of the surface morphology of rubrene under ambient conditions
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/5/10.1063/1.3551624
10.1063/1.3551624
SEARCH_EXPAND_ITEM