1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Metallic surfaces as alignment layers for nondisplay applications of liquid crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/7/10.1063/1.3552674
1.
1.K. Takatoh, M. Hasegawa, M. Koden, N. Iton, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor and Francis, London-New York, 2005).
2.
2.T. Kuki, H. Fujikake, and T. Nomoto, IEEE Trans. Microwave Theory Tech. 50, 2604 (2002).
http://dx.doi.org/10.1109/TMTT.2002.804510
3.
3.C. Weil, St. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, Electron. Lett. 39, 1732 (2003).
http://dx.doi.org/10.1049/el:20031150
4.
4.S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, IEEE MTT-S Digest (IEEE, Fort Worth, TX, 2004), p. 1153.
5.
5.J. AndrewYeh, C. Alex Chang, Ch. -Ch. Cheng, J. -Y. Huang, and Sh. S. H. Hsu, IEEE Electron Device Lett. 26, 451 (2005).
http://dx.doi.org/10.1109/LED.2005.851118
6.
6.S. Mueller, A. Penirschke, C. Damn, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, IEEE Trans. Microwave Theory Tech. 53, 1937 (2005).
http://dx.doi.org/10.1109/TMTT.2005.848842
7.
7.R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, A. J. Hutchison, Y. Khivintsev, B. Kuanr, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, J. Magn. Magn. Mater. 321, 2048 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.04.125
8.
8.A. Gaebler, A. Moessinger, F. Goelden, A. Manabe, M. Goebel, R. Follmann, D. Koether, C. Modes, A. Kipka, M. Deckelmann, T. Rabe, B. Schulz, P. Kuchenbecker, A. Lapanik, S. Mueller, W. Haase, and R. Jakoby, Int. J. Antennas and Propagations 1, 1 (2009).
http://dx.doi.org/10.1155/2009/876989
9.
9.F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, Electron. Lett. 45, 686 (2009).
http://dx.doi.org/10.1049/el.2009.1168
10.
10.T. Kamei, H. Moritake, and Y. Utsumi, Jpn. J. Appl. Phys. 49, 01AF03 (2010).
http://dx.doi.org/10.1143/JJAP.49.01AF03
11.
11.H. L. Ong, A. J. Hurd, and R. B. Meyer, J. Appl. Phys. 57, 186 (1985).
http://dx.doi.org/10.1063/1.334841
12.
12.P. N. Sanda, D. B. Dove, H. L. Ong, S. A. Jansen, and R. Hoffmann, Phys. Rev. A 39, 2653 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.2653
13.
13.David Armitage, Appl. Phys. Lett. 56, 1723 (1990).
http://dx.doi.org/10.1063/1.103127
14.
14.R. Ghannam, N. Collings, W. Crossland, and T. Wilkinson, Proc. SPIE 6332, 6332OH (2006).
15.
15.K. Y. Lo, C. Y. Huang, T. H. Chu, C. J. Hsu, C. H. Lin, and A. Y. G. Fuh, J. Opt. A, Pure Appl. Opt. 8, 501 (2006).
http://dx.doi.org/10.1088/1464-4258/8/6/002
16.
16.J. L. Janning, U.S. Patent No. 4,165,923 (28 August 1979).
17.
17.Liquid Crystals: Experimental Studies of Physical Properties and Phase Transitions, edited by S. Kumar (Cambridge University Press, Cambridge, England, 2000).
18.
18.I. Dierking, Textures of Liquid Crystals (Wiley-VCH, New York, 2003).
http://dx.doi.org/10.1002/3527602054
19.
19.M. Schadt and F. Muller, IEEE Trans. Electron Devices 25, 1125 (1978).
http://dx.doi.org/10.1109/T-ED.1978.19236
20.
20.Liquid Crystals: Applications and Uses, edited by B. Bahadur (World Scientific, Singapore, 1992), Vol. 3, Chap. 5.
21.
21.Yu. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejog, R. E. Camley, Z. Celinski, and A. Glushchenko (to be published elsewhere).
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/7/10.1063/1.3552674
Loading
/content/aip/journal/apl/98/7/10.1063/1.3552674
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/7/10.1063/1.3552674
2011-02-14
2014-07-24

Abstract

Nearly all liquid crystal devices use a rubbed organic layer as a method of orienting the liquid crystals. This letter studies the alignment of nematic liquid crystals by rubbed and nonrubbed metallic surfaces. For rubbed metallic films, a homogeneous planar alignment of liquid crystals is found. Nonrubbed metallic surfaces align liquid crystals nonuniformly and randomly. The alignment produced by a single rubbed metallic surface extends from 10 to and is stable in time. These results are important because they show that the organic layer may be eliminated for some applications, including tunable microwave and infrared signal processing elements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/7/1.3552674.html;jsessionid=1rzxensj1g7ov.x-aip-live-02?itemId=/content/aip/journal/apl/98/7/10.1063/1.3552674&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Metallic surfaces as alignment layers for nondisplay applications of liquid crystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/7/10.1063/1.3552674
10.1063/1.3552674
SEARCH_EXPAND_ITEM