1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Thermal boundary resistance of copper phthalocyanine-metal interface
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/9/10.1063/1.3555449
1.
1.C. Peng, L. Cheng, and M. Mansuripur, J. Appl. Phys. 82, 4183 (1997).
http://dx.doi.org/10.1063/1.366220
2.
2.E. K. Kim, S. I. Kwun, S. M. Lee, H. Seo, and J. G. Yoon, Appl. Phys. Lett. 76, 3864 (2000).
http://dx.doi.org/10.1063/1.126852
3.
3.Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, Adv. Funct. Mater. 19, 610 (2009).
http://dx.doi.org/10.1002/adfm.200800984
4.
4.J. Alvarez-Quintana, L. I. Peralba-Garcia, J. L. Labar, and J. Rodriguez-Viejo, J. Heat Transfer 132, 032402 (2010).
http://dx.doi.org/10.1115/1.4000052
5.
5.C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, Science 315, 351 (2007).
http://dx.doi.org/10.1126/science.1136494
6.
6.R. J. Stevens, A. N. Smith, and P. M. Norris, J. Heat Transfer 127, 315 (2005).
http://dx.doi.org/10.1115/1.1857944
7.
7.S. Chung, J. H. Lee, J. Jeong, J. J. Kim, and Y. Hong, Appl. Phys. Lett. 94, 253302 (2009).
http://dx.doi.org/10.1063/1.3154557
8.
8.Y. S. Tsai, S. H. Wang, C. H. Chen, C. L. Cheng, and T. C. Liao, Appl. Phys. Lett. 95, 233306 (2009).
http://dx.doi.org/10.1063/1.3272110
9.
9.V. -E. Choong, S. Shi, J. Curless, C. -L. Shieh, H. -C. Lee, F. So, J. Shen, and J. Yang, Appl. Phys. Lett. 75, 172 (1999).
http://dx.doi.org/10.1063/1.124309
10.
10.N. Kim, B. Demercq, S. Yoo, A. Christensen, B. Kippelen, and S. Graham, Appl. Phys. Lett. 87, 241908 (2005).
http://dx.doi.org/10.1063/1.2140478
11.
11.D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
http://dx.doi.org/10.1063/1.1141498
12.
12.T. Borca-Tasciuc, A. R. Kumar, and G. Chen, Rev. Sci. Instrum. 72, 2139 (2001).
http://dx.doi.org/10.1063/1.1353189
13.
13.T. Tong and A. Majumdar, Rev. Sci. Instrum. 77, 104902 (2006).
http://dx.doi.org/10.1063/1.2349601
14.
14.Y. S. Ju and K. E. Goodson, J. Appl. Phys. 85, 7130 (1999).
http://dx.doi.org/10.1063/1.370523
15.
15.The entire sample was placed on a glass carrier, which was treated as an adiabatic boundary in the model. The voltage was measured by a lock-in amplifier. The current modulation frequency range was 6 Hz to 2 kHz, much lower than the characteristic thermal diffusion frequency for the CuPc and metal films.
16.
16.Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, and A. C. Gossard, J. Appl. Phys. 105, 054303 (2009).
http://dx.doi.org/10.1063/1.3078808
17.
17.The parasitic current was measured by applying voltage to two separate metal electrodes deposited on the multilayer structure, and proved to be at least 10 000 times smaller than the total current.
18.
18.X-ray diffraction indicated identical phases present in CuPc films throughout the thickness range examined.
19.
19.R. M. Costescu, D. G. Cahill, F. H. Fabrequette, Z. A. Sechrist, and S. M. George, Science 303, 989 (2004).
http://dx.doi.org/10.1126/science.1093711
20.
20.A. Majumdar and P. Reddy, Appl. Phys. Lett. 84, 4768 (2004).
http://dx.doi.org/10.1063/1.1758301
21.
21.P. E. Hopkins, R. J. Stevens, and P. M. Norris, ASME J. Heat Transfer 130, 022401 (2008).
http://dx.doi.org/10.1115/1.2787025
22.
22.R. J. Stoner and H. J. Maris, Phys. Rev. B 48, 16373 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.16373
23.
23.R. Prasher, Appl. Phys. Lett. 94, 041905 (2009).
http://dx.doi.org/10.1063/1.3075065
24.
24.M. Hu, P. Keblinski, J. -S. Wang, and N. Raravikar, J. Appl. Phys. 104, 083503 (2008).
http://dx.doi.org/10.1063/1.3000441
25.
25.A. Ruocco, F. Evangelista, A. Attili, M. P. Donzello, M. G. Betti, L. Giovanelli, and R. Gotler, J. Electron Spectrosc. Relat. Phenom. 137–140, 165 (2004).
http://dx.doi.org/10.1016/j.elspec.2004.02.092
26.
26.V. Y. Aristov, O. V. Molodtsova, V. M. Zhilin, Y. A. Ossipyan, D. V. Vyalikh, B. P. Doyle, S. Nannaroneand, and M. Knupfer, Eur. Phys. J. B 57, 379 (2007).
http://dx.doi.org/10.1140/epjb/e2007-00192-5
27.
27.C. Shen, A. Kahn, and J. Schwartz, J. Appl. Phys. 90, 6236 (2001).
http://dx.doi.org/10.1063/1.1419263
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/9/10.1063/1.3555449
Loading
/content/aip/journal/apl/98/9/10.1063/1.3555449
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/9/10.1063/1.3555449
2011-03-04
2014-07-29

Abstract

Systems containing interfaces between dissimilar materials can exhibit lower thermal conductivity than their pure constituents, with important implications for thermal management and thermoelectric energy conversion. However, the heat transfer processes at such interfaces, in particular those between organic and inorganic materials, remain for the most part uncharacterized. We use vacuum thermal evaporation to grow archetypal multilayerthin films of copper phthalocyanine (CuPc) and Ag or Al, and measure their thermal conductivity as a function of interface density. We observe large thermal boundary resistance values ( for CuPc/Ag and for CuPc/Al), attributable to acoustic mismatch, heat carrier mismatch, and weak bonding.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/9/1.3555449.html;jsessionid=70obsfefpr11o.x-aip-live-06?itemId=/content/aip/journal/apl/98/9/10.1063/1.3555449&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal boundary resistance of copper phthalocyanine-metal interface
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/9/10.1063/1.3555449
10.1063/1.3555449
SEARCH_EXPAND_ITEM