1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/9/10.1063/1.3560062
1.
1.M. Tonouchi, Nat. Photonics 1, 97 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
2.
2.A. Doi, F. Blanchard, H. Hirori, and K. Tanaka, Opt. Express 18, 18419 (2010).
http://dx.doi.org/10.1364/OE.18.018419
3.
3.B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, Nature (London) 410, 60 (2001).
http://dx.doi.org/10.1038/35065032
4.
4.S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, Phys. Rev. Lett. 101, 246401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.246401
5.
5.K. Ishikawa, Phys. Rev. B 82, 201402(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.82.201402
6.
6.L. Razzari, F. H. Su, G. Sharma, F. Blanchard, A. Ayesheshim, H. -C. Bandulet, R. Morandotti, J. -C. Kieffer, T. Ozaki, M. Reid, and F. A. Hegmann, Phys. Rev. B 79, 193204 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.193204
7.
7.M. C. Hoffmann, J. Hebling, H. Y. Hwang, K. -L. Yeh, and K. A. Nelson, Phys. Rev. B 79, 161201(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.161201
8.
8.H. Hirori, M. Nagai and K. Tanaka, Phys. Rev. B 81, 081305(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.081305
9.
9.K. Shinokita, H. Hirori, M. Nagai, N. Satoh, Y. Kadoya, and K. Tanaka, Appl. Phys. Lett. 97, 211902 (2010).
http://dx.doi.org/10.1063/1.3518483
10.
10.M. Jewariya, M. Nagai, and K. Tanaka, Phys. Rev. Lett. 105, 203003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.203003
11.
11.S. Watanabe, N. Minami, and R. Shimano, Opt. Express 19, 1528 (2011).
http://dx.doi.org/10.1364/OE.19.001528
12.
12.W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Phys. Rev. Lett. 104, 146602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.146602
13.
13.J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).
14.
14.K. -L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, Appl. Phys. Lett. 90, 171121 (2007).
http://dx.doi.org/10.1063/1.2734374
15.
15.A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J. -P. Wolf, Opt. Lett. 33, 2497 (2008).
http://dx.doi.org/10.1364/OL.33.002497
16.
16.J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, Opt. Express 18, 12311 (2010).
http://dx.doi.org/10.1364/OE.18.012311
17.
17.Note that of 1, of 780 nm, of 2.23, and of 5.16 are used for the calculation in Fig. 2 (Ref. 18).
18.
18.J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, Appl. Phys. B: Lasers Opt. 78, 593 (2004).
http://dx.doi.org/10.1007/s00340-004-1469-7
19.
19.M. Jewariya, M. Nagai, and K. Tanaka, J. Opt. Soc. Am. B 26, A101 (2009).
http://dx.doi.org/10.1364/JOSAB.26.00A101
20.
20.An EO signal measured by balanced photodetectors was calibrated to electric field amplitude with the formula [see Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997)];
http://dx.doi.org/10.1063/1.119873
20.for the GaP detection crystal used here, the refractive index [see Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, London, 1985)];
20.the EO coefficient [see Y. Berozashvili, S Machavariani, A Natsvlishvili, and A Chirakadze, J. Phys. D: Appl. Phys. 22, 682 (1989)];
http://dx.doi.org/10.1088/0022-3727/22/5/017
20.the thickness . Fresnel transimission coefficients for the GaP crystal surface and for the Si wafer were used.
21.
21.M. Reid and R. Fedosejevs, Appl. Opt. 44, 149 (2005).
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/9/10.1063/1.3560062
Loading
/content/aip/journal/apl/98/9/10.1063/1.3560062
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/9/10.1063/1.3560062
2011-03-02
2015-04-26

Abstract

Using the tilted-pump-pulse-front scheme, we generate single-cycle terahertz (THz) pulses by optical rectification of femtosecond laser pulses in . In our THz generation setup, the condition that the image of the grating coincides with the tilted-optical-pulse front is fulfilled to obtain optimal THz beam characteristics and pump-to-THz conversion efficiency. By using an uncooled microbolometer-array THz camera, it is found that the THz beam leaving the output face of the LN crystal can be regarded as a collimated rather than point source. The designed focusing geometry enables tight focus of the collimated THz beam with a spot size close to the diffraction limit, and the maximum THz electric field of 1.2 MV/cm is obtained.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/9/1.3560062.html;jsessionid=157e9cl64sunh.x-aip-live-03?itemId=/content/aip/journal/apl/98/9/10.1063/1.3560062&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/9/10.1063/1.3560062
10.1063/1.3560062
SEARCH_EXPAND_ITEM