1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/9/10.1063/1.3561752
1.
1.E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
2.
2.C. López, Adv. Mater. (Weinheim, Ger.) 15, 1679 (2003).
http://dx.doi.org/10.1002/adma.200300386
3.
3.Y. Matsuhisa, Y. H. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, Appl. Phys. Lett. 90, 091114 (2007).
http://dx.doi.org/10.1063/1.2710777
4.
4.N. Y. Ha, S. M. Jeong, S. Nishimura, G. Suzaki, K. Ishikawa, and H. Takezoe, Adv. Mater. (Weinheim, Ger.) 20, 2503 (2008).
http://dx.doi.org/10.1002/adma.200703204
5.
5.S. H. Kim, W. C. Jeong, and S. M. Yang, Chem. Mater. 21, 4993 (2009).
http://dx.doi.org/10.1021/cm9026144
6.
6.J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, Appl. Phys. Lett. 88, 091102 (2006).
http://dx.doi.org/10.1063/1.2174090
7.
7.F. Y. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, Appl. Phys. Lett. 95, 163301 (2009).
http://dx.doi.org/10.1063/1.3245319
8.
8.H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, Adv. Mater. (Weinheim, Ger.) 21, 4134 (2009).
http://dx.doi.org/10.1002/adma.200900721
9.
9.M. H. Kok, W. X. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, Appl. Phys. Lett. 92, 151108 (2008).
http://dx.doi.org/10.1063/1.2907488
10.
10.F. Jin, Y. Song, X. Z. Dong, W. Q. Chen, and X. M. Duan, Appl. Phys. Lett. 91, 031109 (2007).
http://dx.doi.org/10.1063/1.2766652
11.
11.C. F. Li, F. Jin, X. Z. Dong, W. Q. Chen, and X. M. Duan, J. Lumin. 127, 321 (2007).
http://dx.doi.org/10.1016/j.jlumin.2007.01.006
12.
12.C. Christopher, Davis, Lasers, and Electro-Optics: Fundamentals and Engineering (Cambridge University Press, New York, 1996).
13.
13.W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, Mol. Cryst. Liq. Cryst. 429, 101 (2005).
http://dx.doi.org/10.1080/15421400590930782
14.
14.K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. H. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, Opt. Express 16, 10358 (2008).
http://dx.doi.org/10.1364/OE.16.010358
15.
15.F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duan, Appl. Phys. Lett. 89, 241101 (2006).
http://dx.doi.org/10.1063/1.2404941
16.
16.B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, Adv. Mater. (Weinheim, Ger.) 21, 771 (2009).
http://dx.doi.org/10.1002/adma.200800729
17.
17.P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).
http://dx.doi.org/10.1021/cm990080+
18.
18.L. T. Shi, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, Proc. SPIE 7774, 77740V (2010).
http://dx.doi.org/10.1117/12.859997
19.
19.P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1991).
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/9/10.1063/1.3561752
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM images of top view (a) and cross section (b) of PS PC. (c) Transmission (solid line) and reflection spectra (dash line) of PS PC, and fluorescence of dye-doped film (dot line). (d) Schematic illustration of the resonator cavity.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Chemical structure of the lactone and zwitterion forms of -Bu-RhB molecule and photos of dye-doped films before and after acidic treatment. (b) Absorption (left line) and emission spectra (right line) of -Bu-RhB doped polymer film with thickness of . Inset is the corresponding SEM image of dye-doped polymer film.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Emission spectra of the resonator cavity with film thickness of below and above lasing threshold. (b) Changes in the emission intensity (cubic) and FWHM (triangle) for resonator cavity as a function of excitation energy.

Image of FIG. 4.

Click to view

FIG. 4.

Lasing threshold dependence on the thickness of dye-doped film and data fitting by Eq. (4).

Loading

Article metrics loading...

/content/aip/journal/apl/98/9/10.1063/1.3561752
2011-03-04
2014-04-18

Abstract

The authors have demonstrated the optimization of the active layer thickness on the threshold of organic solid-state dye-doped laser (SSDL), which was fabricated by three-dimensional polymeric opal photonic crystal and tert-butyl Rhodamine B (-Bu-RhB) dopedpolymer film. Gain media were produced by incorporating -Bu-RhB into polymer film at 3.0 wt %. The sandwiched laser resonatorcavities with different active layer thickness displayed single-mode lasing oscillations in the reflection band gap of the resonator structure. The lasing threshold as low as was achieved. The optimization of active layer would provide an opportunity to accelerate the development of low threshold polymeric SSDLs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/9/1.3561752.html;jsessionid=7001tjikg4kj3.x-aip-live-02?itemId=/content/aip/journal/apl/98/9/10.1063/1.3561752&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/9/10.1063/1.3561752
10.1063/1.3561752
SEARCH_EXPAND_ITEM