1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Hot carrier effect on gate-induced drain leakage current in high-k/metal gate n-channel metal-oxide-semiconductor field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/1/10.1063/1.3608241
1.
1. Y. Kim, G. Gebara, M. Freiler, J. Barnett, D. Riley, J. Chen, K. Torres, J. E. Lim, B. Foran, F. Shaapur, A. Agarwal, P. Lysaght, G. A. Brown, C. Young, S. Borthakur, H. J. Li, B. Nguyen, P. Zeitzoff, G. Bersuker, D. Derro, R. Bergmann, R. W. Murto, A. Hou, H. R. Huff, E. Shero, C. Pomarede, M. Givens, M. Mazanec, and C. Werkhoven, IEDM Tech. Dig. 455 (2001).
2.
2. Chih-Hao Dai, Ting-Chang Chang, Ann-Kuo Chu, Yuan-Jui Kuo, Wen-Hung Lo, Szu-Han Ho, Ching-En Chen, Jou-Miao Shih, Hua-Mao Chen, Bai-Shan Dai, Guangrui Xia, Osbert Cheng, and Cheng Tung Huang, Appl. Phys. Lett. 98, 092112 (2011).
http://dx.doi.org/10.1063/1.3560463
3.
3. G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “ Review on high-k dielectrics reliability, issues,” IEEE Trans. Device Mater. Rel. 5, 5 (2005).
http://dx.doi.org/10.1109/TDMR.2005.845236
4.
4. M. Casse, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, and F. Boulanger, IEEE Trans. Electron Devices 53, 759 (2006).
http://dx.doi.org/10.1109/TED.2006.870888
5.
5. S. Zafar, A. Kumar, E. Gusev, and E. Cartier, IEEE Trans. Device Mater. Rel. 5, 45 (2005).
http://dx.doi.org/10.1109/TDMR.2005.845880
6.
6. J. C. Liao, Y.-K. Fang, Y. T. Hou, W. H. Tseng, P. F. Hsu, K. C. Lin, K. T. Huang, T. L. Lee, and M. S. Liang, IEEE Trans. Electron Device Lett. 29, 509 (2008).
http://dx.doi.org/10.1109/LED.2008.920286
7.
7. E. Amat, T. Kauerauf, R. Degraeve, A. D. Keersgieter, R. Rodríguez, M. Nafría, X. Aymerich, and G. Groeseneken, in Proceedings of the 9th International Conference on Ultimate Integration on Silicon, Palazzo Antonini Udine, Italy, 12-14 March 2008, p. 103.
8.
8. S. Cimino, L. Pantisano, M. Aoulaiche, R. Degraeve, D. H. Kwak, F. Crupi, G. Groeseneken, and A. Paccagnella, in Proceedings of IEEE International Reliability Physics Symposium, California, 17-21 April 2005, p. 275.
9.
9. M. Takayanagi, T. Watanabe, R. Iijima, K. Ishimaru, and Y. Tsunashima, in Proceedings of IEEE International Reliability Physics Symposium, Phoenix, Arizona, 25-29 April 2004, p. 13.
10.
10. I. Crupi, Microelectron. Eng. 86, 1 (2009).
http://dx.doi.org/10.1016/j.mee.2008.08.009
11.
11. X. H. Ma, Y. R. Cao, H. X. Gao, H. F. Chen, and Y. Hao, Appl. Phys. Lett. 95, 152107 (2009).
http://dx.doi.org/10.1063/1.3250435
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/1/10.1063/1.3608241
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Id -Vg and corresponding Ib -Vg transfer characteristic curves as a function of stress time during CHCS for devices with (a) 10 Å and (b) 30 Å IL thicknesses. The inset of (b) shows the Ib -Vg curves measured by reverse mode operation (source/drain interchanged).

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) ΔIGIDL versus stress time under CHCS for thin IL oxide devices with different HfO2 thicknesses. The inset shows the band diagrams before (solid line) and after (dashed line) hole capture by bulk traps.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) ΔIGIDL versus stress time under various Vg stress conditions with Vd  = 3 V. The GIDL current is measured at Vd  = 2 V and Vg  = −0.5 V. Inset shows substrate current as function of Vg at Vd  = 3 V. (b) Schematic of energy band diagram of trap-assisted band-to-band hole tunneling model.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Ib -Vg transfer characteristic curves before and after CHCS for thin IL oxide devices with (a) ground and (b) floating source terminal during stress.

Loading

Article metrics loading...

/content/aip/journal/apl/99/1/10.1063/1.3608241
2011-07-06
2014-04-21

Abstract

This paper investigates the channel hot carrier stress (CHCS) effects on gate-induced drain leakage (GIDL) current in high-k/metal-gate n-type metal-oxide-semiconductor field effect transistors. It was found that the behavior of GIDL current during CHCS is dependent upon the interfacial layer (IL) oxide thickness of high-k/metal-gate stacks. For a thinner IL, the GIDL current gradually decreases during CHCS, a result contrary to that found in a device with thicker IL. Based on the variation of GIDL current at different stress conditions, the trap-assisted band-to-band hole injection model is proposed to explain the different behavior of GIDL current for different IL thicknesses.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/1/1.3608241.html;jsessionid=24bnlmc46yrev.x-aip-live-01?itemId=/content/aip/journal/apl/99/1/10.1063/1.3608241&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hot carrier effect on gate-induced drain leakage current in high-k/metal gate n-channel metal-oxide-semiconductor field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/1/10.1063/1.3608241
10.1063/1.3608241
SEARCH_EXPAND_ITEM