1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/10/10.1063/1.3635385
1.
1. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
http://dx.doi.org/10.1103/PhysRev.106.874
2.
2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
3.
3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
http://dx.doi.org/10.1038/35570
4.
4. N. C. Lindquist, W. A. Luhman, S. Oh, and R. J. Holmes, Appl. Phys. Lett. 93, 123308 (2008).
http://dx.doi.org/10.1063/1.2988287
5.
5. T. H. Reilly III, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, Appl. Phys. Lett. 92, 243304 (2008).
http://dx.doi.org/10.1063/1.2938089
6.
6. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, Opt. Express 18, A237 (2010).
http://dx.doi.org/10.1364/OE.18.00A237
7.
7. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
http://dx.doi.org/10.1063/1.2734885
8.
8. K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).
http://dx.doi.org/10.1364/OE.16.021793
9.
9. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
10.
10. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, J. Appl. Phys. 105, 053711 (2009).
http://dx.doi.org/10.1063/1.3079797
11.
11. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, Sol. Energy Mater. Sol. Cells 61, 97 (2000).
http://dx.doi.org/10.1016/S0927-0248(99)00100-2
12.
12. B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
13.
13. S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, Appl. Phys. Lett. 91, 243501 (2007).
http://dx.doi.org/10.1063/1.2789677
14.
14. B. O’Connor, C. Haughn, K. An, K. P. Pipe, and M. Shtein, Appl. Phys. Lett. 93, 223304 (2008).
http://dx.doi.org/10.1063/1.3028046
15.
15. M. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, Adv. Mater. 22, 4378 (2010).
http://dx.doi.org/10.1002/adma.201001395
16.
16. S. H. Lee, K. C. Bantz, N. C. Lindquist, S. Oh, and C. L. Haynes, Langmuir 25, 13685 (2009).
http://dx.doi.org/10.1021/la9020614
17.
17. C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, J. Phys. Chem. B 106, 1898 (2002).
http://dx.doi.org/10.1021/jp013570+
18.
18. S. G. Rodrigo, L. Martín-Moreno, A. Y. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal, Opt. Lett. 34, 4 (2009).
http://dx.doi.org/10.1364/OL.34.000004
19.
19. B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, Adv. Mater. 17, 2714 (2005).
http://dx.doi.org/10.1002/adma.v17:22
20.
20. S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes, and T. S. Jones, Sol. Energy Mater. Sol. Cells 83, 229 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.02.027
21.
21. F. Yang, K. Sun, and S. R. Forrest, Adv. Mater. 19, 4166 (2007).
http://dx.doi.org/10.1002/adma.v19:23
22.
22. A. D. Rakic, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
http://dx.doi.org/10.1364/AO.37.005271
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/10/10.1063/1.3635385
Loading
/content/aip/journal/apl/99/10/10.1063/1.3635385
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/10/10.1063/1.3635385
2011-09-09
2014-09-23

Abstract

We investigate thin Agfilms incorporating plasmonic nanohole arrays as transparent conducting electrodes for organic photovoltaic cells.Plasmonicelectrodes are fabricated using nanospherelithography to create hexagonal nanohole arrays over centimeter-sized areas. Devices constructed using a nanopatterned Aganode show power conversion efficiencies that exceed those of devices constructed on conventional indium-tin-oxide, independent of light polarization. In comparison to cells constructed on unpatterned Ag, the power conversion efficiency is noted to double with patterning.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/10/1.3635385.html;jsessionid=3mi6gn6k8sra1.x-aip-live-03?itemId=/content/aip/journal/apl/99/10/10.1063/1.3635385&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/10/10.1063/1.3635385
10.1063/1.3635385
SEARCH_EXPAND_ITEM