1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/11/10.1063/1.3638466
1.
1. K. L. Chopra, P. D. Paulson, and V. Dutta, Prog. Photovoltaics 12, 69 (2004).
http://dx.doi.org/10.1002/pip.v12:2/3
2.
2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
3.
3. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhana, U. N. Roy, Y. Cui, and A. Burger, Appl. Phys. Lett. 91, 191111 (2007).
http://dx.doi.org/10.1063/1.2807277
4.
4. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
http://dx.doi.org/10.1063/1.2733649
5.
5. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
http://dx.doi.org/10.1063/1.2957980
6.
6. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, Appl. Phys. Lett. 92, 013504 (2008).
http://dx.doi.org/10.1063/1.2823578
7.
7. K. R. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
http://dx.doi.org/10.1063/1.3021072
8.
8. M. J. Mendes, A. Luque, I. Tobias, and A. Marti, Appl. Phys. Lett. 95, 071105 (2009).
http://dx.doi.org/10.1063/1.3205470
9.
9. Y. A. Akimov, W. S. Koh, and K. Ostrikov, Opt. Express 17, 10195 (2009).
http://dx.doi.org/10.1364/OE.17.010195
10.
10. J.-Y. Lee and P. Peumans, Opt. Express 18, 10078 (2010).
http://dx.doi.org/10.1364/OE.18.010078
11.
11. D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and Electrical Properties of Efficiency Enhanced Polymer Solar Cells with Au Nanoparticles in PEDOT-PSS Layer”, J. Mater. Chem. (in press).
12.
12. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
13.
13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
http://dx.doi.org/10.1364/AO.37.005271
14.
14.See supplementary material at http://dx.doi.org/10.1063/1.3638466 for numerical implementation of volume integral equation method. [Supplementary Material]
15.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/11/10.1063/1.3638466
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) and (b) A schematic OSC nanostructure. To enhance the optical absorption of the OSC, a spherical chain comprising multiple NSPs is embedded into a spacer layer (PEDOT:PSS) or into an active layer (P3HT:PCBM). The geometric size is t 1 = 1.25D and t 2 = 2.5D. The spacing between adjacent NSPs is d = D or d = 0.2D for the separated or close-packed ones, respectively. The diameter is D = 20 nm or D = 40 nm for the small or large NSPs, respectively. The yellow arrows represent the propagation direction of an incident light with a TM polarization and the red dashed lines denote corresponding near-field profiles of NSPs. (c) Absorption coefficient of the active material. (d) and (e) Near-field polarization current distributions of the OSC nanostructure at a vertical and an oblique incidences, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) The spectral enhancement factors of the OSC with NSPs are embedded into the spacer. The angular responses of the OSC for the vertical (0°) and oblique (60°) incidences are also shown. (a) Separated small NSPs; (b) close-packed small NSPs; (c) separated large NSPs; and (d) close-packed large NSPs.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) The spectral enhancement factors of the OSC with NSPs are embedded into the active layer. The angular responses of the OSC for the vertical (0°) and oblique (60°) incidences are also shown. (a) Separated small NSPs; (b) close-packed small NSPs; (c) separated large NSPs; and (d) close-packed large NSPs.

Tables

Generic image for table

Click to view

Table I.

Total enhancement factors for NSPs embedded into the spacer and active layer.

Loading

Article metrics loading...

/content/aip/journal/apl/99/11/10.1063/1.3638466
2011-09-14
2014-04-16

Abstract

We investigate near-field multiple scattering effects of plasmonicnanospheres (NSPs) embedded into organic solar cells (OSCs). When NSPs are embedded into a spacer layer, the near-field scattering from the NSPs shows strong direction-dependent features, which significantly affects the optical absorption. When NSPs are embedded into an active layer, the absorption enhancement is attributed to the interplay between longitudinal and transverse modes supported by the NSP chain. The breakdown of electrostatic scaling law is confirmed by our theoretical model and should be accounted for optical designs of OSCs. The work provides the fundamental physical understanding and design guidelines for plasmonic photovoltaics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/11/1.3638466.html;jsessionid=ggs9o3dot1ebr.x-aip-live-01?itemId=/content/aip/journal/apl/99/11/10.1063/1.3638466&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/11/10.1063/1.3638466
10.1063/1.3638466
SEARCH_EXPAND_ITEM