1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Increased efficiency of low band gap polymer solar cells at elevated temperature and its origins
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/13/10.1063/1.3643450
1.
1. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. Photonics 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
2.
2. S. Sista, M. H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, and Y. Yang, Adv. Mater. 22, 380 (2010).
http://dx.doi.org/10.1002/adma.200901624
3.
3. Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, Nat. Mater. 10, 296 (2011).
http://dx.doi.org/10.1038/nmat2951
4.
4. J. Huang, G. Li, E. Wu, Q. Xu, and Y. Yang, Adv. Mater. 18, 114 (2006).
http://dx.doi.org/10.1002/adma.v18:1
5.
5. J. Huang, G. Li, and Y. Yang, Adv. Mater 20, 415 (2008).
http://dx.doi.org/10.1002/adma.v20:3
6.
6. T. M. Clarke and J. R. Durrant, Chem. Rev. 110, 6736 (2010).
http://dx.doi.org/10.1021/cr900271s
7.
7. V. D. Mihailetchi, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 94, 126602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.126602
8.
8. J. Huang, Z. Xu, and Y. Yang, Adv. Func. Mater. 17, 1966 (2007).
http://dx.doi.org/10.1002/adfm.200790041
9.
9. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).
http://dx.doi.org/10.1002/1616-3028(200110)11:5<>1.0.CO;2-R
10.
10. A. Maurano, R. Hamilton, C. G. Shuttle, A. M. Ballantyne, J. Nelson, B. O’Regan, W. Zhang, I. McCulloch, H. Azimi, and M. Morana, Adv. Mater. 22, 4987 (2010).
http://dx.doi.org/10.1002/adma.201002360
11.
11. H. J. Snaith, N. C. Greenham, and R. H. Friend, Adv. Mater. 16, 1640 (2004).
http://dx.doi.org/10.1002/adma.v16:18
12.
12. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V. Manca, Nat. Mater. 8, 904 (2009).
http://dx.doi.org/10.1038/nmat2548
13.
13. J. H. Lee, S. Cho, A. Roy, H. T. Jung, and A. J. Heeger, Appl. Phys. Lett. 96, 163303 (2010).
http://dx.doi.org/10.1063/1.3409116
14.
14. F. Kremer and A. Schönhals, Broadband dielectric spectroscopy (Springer, Berlin, 2003).
15.
15. J. Szmytkowski, Chem. Phys. Lett. 470, 123 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.01.043
16.
16. X. Y. Zhu, Q. Yang, and M. Muntwiler, Acc. Chem. Res. 42, 1779 (2009).
http://dx.doi.org/10.1021/ar800269u
17.
17. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater. 6, 497 (2007).
http://dx.doi.org/10.1038/nmat1928
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/13/10.1063/1.3643450
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Variation of J-V curve with temperature. The inset shows the change of J-V curve at 125 °C between after annealing 10 minutes and annealing 20 minutes; (b) Variation of photovoltaic parameters with temperature from RT to 145 °C.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Variation of carrier mobilities with temperature.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Variation of Voc with temperature. The experimentally measured Voc is shown in blue solid squares. The calculated Voc from Eq. (1) is shown in green solid triangles. Red solid circles show the calculated Voc through adding the calculated from Eq. (3) to the calculated Voc from Eq. (1). The inset shows the energetic level diagram of PSBTBT:PCBM interface. (b) Variation of device capacitance with frequency at different temperatures. The inset shows the increase of device capacitance with temperature at 4 kHz.

Loading

Article metrics loading...

/content/aip/journal/apl/99/13/10.1063/1.3643450
2011-09-30
2014-04-23

Abstract

Photovoltaic characteristics of a low bandgappolymer, poly[(4,4′-bis(2-lethylhexyl)dithieno-[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl], based bulk hetero-junction organic photovoltaic were investigated from room temperature (RT) to 145 °C to evaluate its applications in harsh environments. The power conversion efficiency was found to increase from 4.1% at RT to 4.5% at 105 °C with increased short circuit current density (Jsc ) and fill factor (FF) despite the decreased open circuit voltage (Voc ). Detailed investigation revealed that Jsc and FF improvements were caused by the increased and balanced carrier mobilities at higher temperatures. The Voc of the low bandgappolymersolar cell is determined not only by the energy levels and dark currents, but also by the binding energy of charge transfer excitons (CTEs). A slower reduction of Voc is observed at high temperatures due to the decreased binding energy of CTEs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/13/1.3643450.html;jsessionid=el2x7rllef28.x-aip-live-06?itemId=/content/aip/journal/apl/99/13/10.1063/1.3643450&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Increased efficiency of low band gap polymer solar cells at elevated temperature and its origins
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/13/10.1063/1.3643450
10.1063/1.3643450
SEARCH_EXPAND_ITEM