1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Morphology effects on charge generation and recombination dynamics at ZnPc:C60 bulk hetero-junctions using time-resolved terahertz spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/14/10.1063/1.3644129
1.
1. I. Bruder, M. Karlsson, F. Eickemeyer, J. Hwang, P. Erk, A. Hagfeldt, J. Weis, and N. Pschirer, Sol. Energy Mater. Sol. Cells 93, 1896 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.05.020
2.
2. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, Appl. Phys. Lett. 94, 253303 (2009).
http://dx.doi.org/10.1063/1.3154554
3.
3. S. Pfuetzner, C. Mickel, J. Jankowski, M. Hein, J. Meiss, C. Schuenemann, C. Elschner, A. A. Levin, B. Rellinghaus, K. Leo, and M. Riede, Org. Electron. 12, 435 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.12.007
4.
4. K. Fostiropoulos and W. Schindler, Phys. Status Solidi B. 246, 2840 (2009).
http://dx.doi.org/10.1002/pssb.200982309
5.
5. C. Deibel, T. Strobel, and V. Dyakonov, Phys. Rev. Lett. 103, 036402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.036402
6.
6. V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, Phys. Rev. Lett. 93, 216601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.216601
7.
7. D. Veldman, O. Ipek, S. C. J. Meskers, J. Sweelssen, M. M. Koetse, S. C. Veenstra, J. M. Kroon, S. S. van Bavel, J. Loos, and R. A. J. Janssen, J. Am. Chem. Soc. 130, 7721 (2008).
http://dx.doi.org/10.1021/ja8012598
8.
8. J. G. Müller, J. M. Lupton, J. Feldmann, U. Lemmer, M. C. Scharber, N. S. Sariciftci, C. J. Brabec, and U. Scherf, Phys. Rev. B 72, 195208 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.195208
9.
9. I. Hwang, D. Moses, and A. J. Heeger, J. Phys. Chem. C 112, 4350 (2008).
http://dx.doi.org/10.1021/jp075565x
10.
10. F. L. Zhang, K. G. Jespersen, C. Bjorstrom, M. Svensson, M. R. Andersson, V. Sundstrom, K. Magnusson, E. Moons, A. Yartsev, and O. Inganas, Adv. Funct. Mater. 16, 667 (2006).
http://dx.doi.org/10.1002/adfm.v16:5
11.
11. C. Groves, R. A. Marsh, and N. C. Greenham, J. Chem. Phys. 129, 114903 (2008).
http://dx.doi.org/10.1063/1.2977992
12.
12. X. Ai, M. C. Beard, K. P. Knutsen, S. E. Shaheen, G. Rumbles, and R. J. Ellingson, J. Phys. Chem. B 110, 25462 (2006).
http://dx.doi.org/10.1021/jp065212i
13.
13. P. D. Cunningham and L. M. Hayden, J. Phys. Chem. C 112, 7928 (2008).
http://dx.doi.org/10.1021/jp711827g
14.
14. P. Parkinson, J. Lloyd-Hughes, M. B. Johnston, and L. M. Herz, Phys. Rev. B 78, 115321 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115321
15.
15. H. Nemec, H. K. Nienhuys, E. Perzon, F. L. Zhang, O. Inganas, P. Kuzel, and V. Sundstrom, Phys. Rev. B 79, 245326 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245326
16.
16. H. Nemec, F. Kadlec, and P. Kuzel, J. Chem. Phys. 117, 8454 (2002).
http://dx.doi.org/10.1063/1.1512648
17.
17. G. Ruani, V. Dediu, M. Liess, E. Lunedei, R. Michel, M. Muccini, M. Murgia, C. Taliani, and R. Zamboni, Synth. Met. 103, 2392 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)00297-5
18.
18. O. Esenturk, J. S. Melinger, P. A. Lane, and E. J. Heilweil, J. Phys. Chem. C 113, 18842 (2009).
http://dx.doi.org/10.1021/jp904107x
19.
19. I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, Chem. Phys. Lett. 327, 181 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00882-4
20.
20. T. M. Clarke and J. R. Durrant, Chem. Rev. 110, 6736 (2010).
http://dx.doi.org/10.1021/cr900271s
21.
21. B. P. Rand, J. Xue, S. Uchida, and S. R. Forrest, J. Appl. Phys. 98, 124902 (2005).
http://dx.doi.org/10.1063/1.2142072
22.
22. C. J. Brabec, G. Zerza, G. Cerullo, S. de Silvestri, S. Luzzati, J. C. Hummelen, and S. Sariciftci, Chem. Phys. Lett. 340, 232 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00431-6
23.
23. S. De, T. Pascher, M. Maiti, K. G. Jespersen, T. Kesti, F. Zhang, O. Inganäs, A. Yartsev, and V. Sundström, J. Am. Chem. Soc. 129, 8466 (2007).
http://dx.doi.org/10.1021/ja068909q
24.
24. P. Peumans and S. R. Forrest, Chem. Phys. Lett. 398, 27 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.030
25.
25. J.-L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, Acc. Chem. Res. 42, 1691 (2009).
http://dx.doi.org/10.1021/ar900099h
26.
26. C. L. Braun, J. Chem. Phys. 80, 4157 (1984).
http://dx.doi.org/10.1063/1.447243
27.
27. P. A. C. Quist, T. Martens, J. V. Manca, T. J. Savenije, and L. D. A. Siebbeles, Sol. Energy Mater. Sol. Cells 90, 362 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.04.026
28.
28. C. Hein, E. Mankel, T. Mayer, and W. Jaegermann, Sol. Energy Mater. Sol. Cells 94, 662 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.10.022
29.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3644129
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Absorption of ZnPc:C60 films for different substrate growth temperatures TS (25 °C, 90 °C, 120 °C) as well as for pristine ZnPc and C60 films. Inset: Ratio of normalized ZnPc:C60 (25 °C) to normalized ZnPc (25 °C) absorption, (b) TEM micrographs of ZnPc:C60 film cross sections andcorresponding FFT analysis. The TS = 25 °C film is mostly amorphous, while the TS = 120 °C film shows crystalline C60 domains (Ø ∼ 20–25 nm) with signatures of C60(111), C60(202), and C60(222).

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) No significant THz absorption for pure ZnPc (triangles) and C60 (diamonds) films excited at 800 nm . At 400 nm, the C60 film exhibits transient photoconductivity with ultrafast bi-exponential decay (squares). (b) Comparison of transient photoconductivity for ZnPc:C60 blends prepared at TS = 25 °C, 90 °C, and 120 °C. (c) Schematic of charge generation and recombination at the ZnPc:C60 interface. Bound interfacial CT states are generated by exciton interface dissociation or direct excitation. The charge-separated state is reached by (1) direct splitting of excited CT states, or (2) rapid thermalization with subsequent slow charge separation from the relaxed CT-state.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Time-dependent relative THz field transmission. (a) Pump intensity dependence of the charge carrier generation and decay dynamics in the TS = 120 °C blend. (b) Recombination dynamics of the three ZnPc:C60 blends at high pump intensities of 83 μJ/cm2 (∼3·1018 photons/cm3). Inset: zoom into the early dynamics for times Δt ≤ 12 ps.

Loading

Article metrics loading...

/content/aip/journal/apl/99/14/10.1063/1.3644129
2011-10-03
2014-04-23

Abstract

The influence of growth temperature induced phase segregation and crystallinity in ZnPc:C60 blend films on the chargegeneration and recombination dynamics is investigated with optical-pump terahertz-probe spectroscopy. While an ultrafast photo-induced chargegeneration process is observed for all morphologies, a subsequent sub-nanosecond photoconductivity rise depends on crystallinity and phase segregation. For higher intensities, the signal is dominated by a morphology-dependent bimolecular recombination process. High local mobilities of minimal μ ∼ 0.3 cm2/Vs are found. The increase of photoconductivity with film growth temperature correlates with formerly observed device photocurrent improvements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/14/1.3644129.html;jsessionid=6lq95616aus89.x-aip-live-03?itemId=/content/aip/journal/apl/99/14/10.1063/1.3644129&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Morphology effects on charge generation and recombination dynamics at ZnPc:C60 bulk hetero-junctions using time-resolved terahertz spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3644129
10.1063/1.3644129
SEARCH_EXPAND_ITEM