1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Coaxial carbon nanotube–polythiophene core-shell nanowire for efficient hole transport in heterojunction photovoltaic device
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/14/10.1063/1.3645587
1.
1. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Mater. Today 10, 28 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70276-6
2.
2. B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, Prog. Photovoltaics 15, 659 (2007).
http://dx.doi.org/10.1002/pip.v15:8
3.
3. H. Hoppe and N. S. Sariciftci, Adv. Polym. Sci. 214, 1 (2008).
http://dx.doi.org/10.1007/12_2007_121
4.
4. B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed. 47, 58 (2008).
http://dx.doi.org/10.1002/anie.v47:1
5.
5. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).
http://dx.doi.org/10.1002/adma.200801283
6.
6. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.004
7.
7. L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
8.
8. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Adv. Mater. 22, 3839 (2010).
http://dx.doi.org/10.1002/adma.200903697
9.
9. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
10.
10. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 19, 84 (2011).
http://dx.doi.org/10.1002/pip.1088
11.
11. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
12.
12. V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Adv. Funct. Mater. 13, 43 (2003).
http://dx.doi.org/10.1002/adfm.200390004
13.
13. S. A. Choulis, Y. Kim, J. Nelson, D. D. C. Bradley, M. Giles, M. Shkunov, and I. McCulloch, Appl. Phys. Lett. 85, 3890 (2004).
http://dx.doi.org/10.1063/1.1805175
14.
14. B. Pradhan, S. K. Batabyal, and A. J. Pal, Appl. Phys. Lett. 88, 9 (2006).
http://dx.doi.org/10.1063/1.2179372
15.
15. H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Adv. Mater. 11, 1281 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199910)11:15<>1.0.CO;2-Y
16.
16. M. S. Arnold, J. D. Zimmerman, C. K. Renshaw, X. Xu, R. R. Lunt, C. M. Austin, and S. R. Forrest, Nano Lett. 9, 3354 (2009).
http://dx.doi.org/10.1021/nl901637u
17.
17. E. Kymakis and G. A. J. Amaratunga, Appl. Phys. Lett. 80, 112 (2002).
http://dx.doi.org/10.1063/1.1428416
18.
18. R. D. Mccullough and R. D. Lowe, J. Chem. Soc., Chem. Commun. 1, 70 (1992).
http://dx.doi.org/10.1039/c39920000070
19.
19. J. Roncali, Chem. Rev. 92, 711 (1992).
http://dx.doi.org/10.1021/cr00012a009
20.
20. H. N. Cong, M. Dieng, C. Sene, and P. Chartier, Sol. Energy Mater. Sol. Cells 63, 23 (2000).
http://dx.doi.org/10.1016/S0927-0248(00)00017-9
21.
21. E. L. Leguenza, R. L. Patyk, R. M. Q. Mello, L. Micaroni, M. Koehler, and I. A. Hümmelgen, J. Solid State Electrochem. 11, 577 (2007).
http://dx.doi.org/10.1007/s10008-006-0200-5
22.
22. R. Valaski, C. D. Canestraro, L. Micaroni, R. M. Q. Mello, and L.S. Roman, Sol. Energy Mater. Sol. Cells 91, 684 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.12.005
23.
23. E. L. Ratcliff, J. L. Jenkins, K. Nebesny, and N. R. Armstrong, Chem. Mater. 20, 5796 (2008).
http://dx.doi.org/10.1021/cm8008122
24.
24. H. Gao, Y. Chen, and Y. Luo, Nanotechnology 22, 285203 (2011).
http://dx.doi.org/10.1088/0957-4484/22/28/285203
25.
25. Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, 1273 (2004).
http://dx.doi.org/10.1126/science.1101243
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.3645587 for detailed fabrication procedure of the coaxial CNT-PT core-shell nanowire network/PCBM heterojunction photovoltaic device. [Supplementary Material]
27.
27. U. Barsch and F. Beck, Electrochim. Acta 41, 1761 (1996).
http://dx.doi.org/10.1016/0013-4686(95)00493-9
28.
28. B. Krische and M. Zagorska, Synth. Met. 28, C257 (1989).
http://dx.doi.org/10.1016/0379-6779(89)90530-4
29.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3645587
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Schematic representation of a single coaxial CNT(core)-PT(shell) nanowire. (b) Energy band diagram of the coaxial CNT-PT nanowire network/PCBM heterojunction photovoltaic device showing the energy levels of the composing materials and the creation and flow directions of charge carriers. (c) Schematic illustration of the key physical steps in the CNT-PT nanowire/PCBM heterojunction: i) light absorption by PT, ii) exciton dissociation at PT(donor)-PCBM(acceptor) interface, iii) free electron diffusion in PCBM, iv) free hole diffusion across thin PT shell, and v) efficient hole transport towards the anode via the metallic CNT network.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Schematic procedure for preparing the coaxial CNT(core)-PT(shell) nanowire network/PCBM heterojunction photovoltaic device. (a) Pre-cleaned glass substrate. (b) Metallic CNT nanowire network is prepared and transferred onto the glass substrate by a method reported by Wu (see Ref. 25 ) (c) Metal (Al) contact for the CNT nanowire network. (d) Polythiophene outer shell is grown by electropolymerization to wrap around the CNTs. (e) PCBM is spin-casted to infiltrate into the open space of the coaxial CNT-PT structure. (f) Top aluminum (Al) contact is deposited onto the PCBM layer via electron-beam evaporation. (g) Side view of the fabricated coaxial CNT-PT nanowire network/PCBM heterojunction photovoltaic device.

Image of FIG. 3.

Click to view

FIG. 3.

(a) SEM image of the metallic CNT nanowire network (corresponding to Fig. 2(b) ). (b) SEM image of the coaxial CNT(core)-PT(shell) nanowire network (corresponding to Fig. 2(d) ), and (c) SEM image after spin-coating of PCMB (corresponding to Fig. 2(e) ). Scale bar: 100 nm.

Image of FIG. 4.

Click to view

FIG. 4.

(a) The current-density—voltage characteristics of the coaxial CNT(core)-PT(shell)/PCBM heterojunction photovoltaic device in dark (crosses) and under illumination (circles) equivalent to AM 1.5 G irradiation of 100 mW/cm2. (b) The measured short-circuit current density (), open-circuit voltage (), and of the coaxial CNT(core)-PT(shell)/PCBM heterojunction photovoltaic device under AM 1.5 G illumination of 13 mW/cm2, 80 mW/cm2, 100 mW/cm2, and 1000 mW/cm2, respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/99/14/10.1063/1.3645587
2011-10-07
2014-04-19

Abstract

Efficiently extracting hole from a 3-dimensional bulk heterojunction is critical to polymer photovoltaics. One possible approach is to incorporate efficient hole transport pathway within each individual nanoscale donor-phase component. We present a study employing electrochemically prepared metallic carbon nanotube (CNT)–polythiophene (PT) core-shell nanowire networks trying to realize such a desired structure. Phenyl-C-butyric acid methyl ester was infiltrated into the openings of the core-shell nano-networks as electron acceptor. The thin PT shell can ensure high exciton dissociation rate and efficient free hole transport to the CNT core which serves as an efficient network for extracting hole out of the heterojunction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/14/1.3645587.html;jsessionid=7vv53v8n76hh6.x-aip-live-01?itemId=/content/aip/journal/apl/99/14/10.1063/1.3645587&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Coaxial carbon nanotube–polythiophene core-shell nanowire for efficient hole transport in heterojunction photovoltaic device
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3645587
10.1063/1.3645587
SEARCH_EXPAND_ITEM