1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhance performance of organic solar cells based on an isoindigo-based copolymer by balancing absorption and miscibility of electron acceptor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/14/10.1063/1.3645622
1.
1. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 19, 84 (2011).
http://dx.doi.org/10.1002/pip.1088
2.
2. Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. P. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
3.
3. H. X. Zhou, L. Q. Yang, A. C. Stuart, S. C. Price, S. B. Liu, and W. You, Angew. Chem., Int. Ed. 50, 2995 (2011).
http://dx.doi.org/10.1002/anie.201005451
4.
4. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
http://dx.doi.org/10.1002/adma.v19:12
5.
5. H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Nat. Photonics 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
6.
6. S. Sista, Z. R. Hong, M. H. Park, Z. Xu, and Y. Yang, Adv. Mater. 22, E77 (2010).
http://dx.doi.org/10.1002/adma.200902750
7.
7. J. Gilot, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 22, E67 (2010).
http://dx.doi.org/10.1002/adma.200902398
8.
8. F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, Sol. Energy Mater. Sol. Cells 93, 422 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.12.001
9.
9. Y. H. Zhou, F. L. Zhang, K. Tvingstedt, W. J. Tian, and O. Inganas, Appl. Phys. Lett. 93, 233308 (2008).
http://dx.doi.org/10.1063/1.2945796
10.
10. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
11.
11. P.-L. T. Boudreault, A. Najari, M. Leclerc, Chem. Mater. 23, 456 (2011).
http://dx.doi.org/10.1021/cm1021855
12.
12. F. L. Zhang, K. G. Jespersen, C. Bjorstrom, M. Svensson, M. R. Andersson, V. Sundstrom, K. Magnusson, E. Moons, A. Yartsev, and O. Inganas, Adv. Funct. Mater. 16, 667 (2006).
http://dx.doi.org/10.1002/adfm.v16:5
13.
13. M. T. Dang, L. Hirsch, and G. Wantz, Adv. Mater. 23, 3597 (2011).
http://dx.doi.org/10.1002/adma.201100792
14.
14. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003).
http://dx.doi.org/10.1002/adfm.200390011
15.
15. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
16.
16. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nature Mater. 6, 497 (2007).
http://dx.doi.org/10.1038/nmat1928
17.
17. C. V. Hoven, X. D. Dang, R. C. Coffin, J. Peet, T. Q. Nguyen, and G. C. Bazan, Adv. Mater. 22, E63 (2010).
http://dx.doi.org/10.1002/adma.200903677
18.
18. F. L. Zhang, J. Bijleveld, E. Perzon, K. Tvingstedt, S. Barrau, O. Inganas, and M. R. Andersson, J. Mater. Chem. 18, 5468 (2008).
http://dx.doi.org/10.1039/b811957k
19.
19. L. J. Lindgren, F. L. Zhang, M. Andersson, S. Barrau, S. Hellstrom, W. Mammo, E. Perzon, O. Inganas, and M. R. Andersson, Chem. Mat. 21, 3491 (2009).
http://dx.doi.org/10.1021/cm802949g
20.
20. E. Wang, Z. Ma, Z. Zhang, P. Henriksson, O. Inganas, F. Zhang, and M. R. Andersson, Chem. Commun. 47, 4908 (2011).
http://dx.doi.org/10.1039/c1cc11053e
21.
21. S. Hellström, F. L. Zhang, O. Inganäs, and M. R. Andersson, Dalton Trans. 45, 10032 (2009).
http://dx.doi.org/10.1039/b913769f
22.
22. H. F. W. John, C. de Mello, and R. H. Friend, Adv. Mater. 9, 230 (1997).
http://dx.doi.org/10.1002/adma.v9:3
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3645622
Loading
/content/aip/journal/apl/99/14/10.1063/1.3645622
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/14/10.1063/1.3645622
2011-10-03
2014-07-22

Abstract

Superior absorption of PC71BM in visible region to that of PC61BM makes PC71BM a predominant acceptor for most high efficient polymer solar cells (PSCs). However, we will demonstrate that power conversion efficiencies (PCEs) of PSCs based on poly[N,N′-bis(2-hexyldecyl)isoindigo-6,6′-diyl-alt-thiophene-2,5-diyl] (PTI-1) with PC61BM as acceptor are 50% higher than their PC71BM counterparts under illumination of AM1.5G. AFM images reveal different topographies of the blends between PTI-1:PC61BM and PTI-1:PC71BM, which suggests that acceptor’s miscibility plays a more important role than absorption. The photocurrent of 9.1 mA/cm2 is among the highest value in PSCs with a driving force for excitondissociation less than 0.2 eV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/14/1.3645622.html;jsessionid=35197ju2r2bef.x-aip-live-02?itemId=/content/aip/journal/apl/99/14/10.1063/1.3645622&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhance performance of organic solar cells based on an isoindigo-based copolymer by balancing absorption and miscibility of electron acceptor
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3645622
10.1063/1.3645622
SEARCH_EXPAND_ITEM