NOTICE:

AIP Publishing will apply a patch on 07-MAY-2015 at 10pm China time to its manuscript submission and processing system (PXP) to correct an intermittent connectivity issue for users in China. Ahead of this patch if you have any urgent issues please contact us at http://help.peerx-press.org/

为中国用户提供论文投稿系统 (PXP)的更新 AIP出版公司将于2015年5月7日晚上10点(北京时间)为中国用户提供论文投稿系统(PXP)的补丁用以修正前期出现的连接问题。 在补丁发布之前,如您有紧急问题请与我们联系: http://help.peerx-press.org/

Thank you for your patience during this process.

1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/99/14/10.1063/1.3645633
1.
1. D. G. Lidzey, D. D. C. Bradley, M. S. Scolnick, T. Virgili, S. Walker, and D. M. Whittaker, Nature 395, 53 (1998).
http://dx.doi.org/10.1038/25692
2.
2. D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Scolnick, Science 288, 1620 (2000).
http://dx.doi.org/10.1126/science.288.5471.1620
3.
3. P. Michetti and G. C. La Rocca, Phys. Rev. B 77, 195301 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195301
4.
4. V. M. Agranovich, M. Litiskaia, and D. G. Lidzey, Phys. Rev. B 67, 085311 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085311
5.
5. M. Litinskaya, P. Reineker, and V. M. Agranovich, J. Lumin. 110, 364 (2004);
http://dx.doi.org/10.1016/j.jlumin.2004.08.033
5. P. G. Savvidis, L. G. Connolly, M. S. Skolnick, D. G. Lidzey, and J. J. Baumberg, Phys. Rev. B 74, 113312 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.113312
6.
6. S. Kena-Cohen and S. R. Forrest, Nat. Photonics 4, 371 (2010).
http://dx.doi.org/10.1038/nphoton.2010.86
7.
7. L. Mazza, L. Fontanesi, and G. C. La Rocca, Phys. Rev. B 80, 235314 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235314
8.
8. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, Phys. Rev. A 53, 4250 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.4250
9.
9. M. Maragkou, A. J. D. Grundy, T. Ostatnicky, and P. G. Lagoudakis, Appl. Phys. Lett. 97, 111110 (2010).
http://dx.doi.org/10.1063/1.3488012
10.
10. J. Chovan, I. E. Perakis, S. Ceccarelli, and D. G. Lidzey, Phys. Rev. B 78, 045320 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045320
11.
11. D. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, Adv. Funct. Mater. 21, 3691 (2011).
http://dx.doi.org/10.1002/adfm.201100756
12.
12. A. H. Herz, Photograph. Sci. Eng. 18, 323 (1974)
13.
13. D. N. Krizhanovskii, I. Tartakovskii, D. G. Lidzey, S. Walker, and M S. Skolnick, J. Appl. Phys. 93, 5003 (2003).
http://dx.doi.org/10.1063/1.1563826
14.
14. T. Kobayashi, in J-Aggregates, edited by T. Kobayashi (World Scientific, Singapore, 1996).
15.
15. G. Christmann, R. Butte, E. Feltin, J.-F. Carlin, and N. Grandjean, Appl. Phys. Lett. 93, 051102 (2008).
http://dx.doi.org/10.1063/1.2966369
16.
16. E. Bittner, S. Zaster, C. Silva, e-print arXiv:1103.1326v1, Dynamics of a polariton condensate in a Organic Semiconductor Microcavity (2011).
17.
17. F. Rossi and T. Kuhn, Rev. Mod. Phys. 74, 895 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.895
18.
18. H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. Phys. 95, 7880 (1991).
http://dx.doi.org/10.1063/1.461317
19.
19. V. Malyshev and P. Moreno, Phys. Rev. B 51, 14587 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.14587
20.
20. S. M. Vlaming, V. A. Malyshev, and J. Knoester, Phys. Rev. B 79, 205121 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205121
21.
21. H. Fidder, J. Terpstra, and D. A. Wiersma, J. Chem. Phys. 94, 6895 (1991).
http://dx.doi.org/10.1063/1.460220
22.
22. V. V. Egorov and M. V. Alfimov, Phys. Usp. 50, 985 (2007).
http://dx.doi.org/10.1070/PU2007v050n10ABEH006317
23.
23. G. M. Akserod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, Phys. Rev. B 82, 113106 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.113106
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3645633
Loading
/content/aip/journal/apl/99/14/10.1063/1.3645633
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/14/10.1063/1.3645633
2011-10-03
2015-05-07

Abstract

A key prerequisite for low-threshold polariton lasing in organic or inorganic microcavity systems is the efficient population of the lower polariton ground state. Here, we report the observation of a resonant phonon-mediated relaxation process which gives rise to nonthermal polariton population with sub 100 fs build-up times. This mechanism is manifested by discrete maxima of the angular-resolved photoluminescence intensity, with corresponding shortening of the photoluminescence rise time at respective phononresonances. The realization of enhanced relaxation rates in disordered J-aggregate systems is important for developing room temperature organic laser sources with less fabrication complexity than their crystalline counterparts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/14/1.3645633.html;jsessionid=22gij3qphpwf7.x-aip-live-02?itemId=/content/aip/journal/apl/99/14/10.1063/1.3645633&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3645633
10.1063/1.3645633
SEARCH_EXPAND_ITEM