1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/14/10.1063/1.3645633
1.
1. D. G. Lidzey, D. D. C. Bradley, M. S. Scolnick, T. Virgili, S. Walker, and D. M. Whittaker, Nature 395, 53 (1998).
http://dx.doi.org/10.1038/25692
2.
2. D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Scolnick, Science 288, 1620 (2000).
http://dx.doi.org/10.1126/science.288.5471.1620
3.
3. P. Michetti and G. C. La Rocca, Phys. Rev. B 77, 195301 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195301
4.
4. V. M. Agranovich, M. Litiskaia, and D. G. Lidzey, Phys. Rev. B 67, 085311 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085311
5.
5. M. Litinskaya, P. Reineker, and V. M. Agranovich, J. Lumin. 110, 364 (2004);
http://dx.doi.org/10.1016/j.jlumin.2004.08.033
5. P. G. Savvidis, L. G. Connolly, M. S. Skolnick, D. G. Lidzey, and J. J. Baumberg, Phys. Rev. B 74, 113312 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.113312
6.
6. S. Kena-Cohen and S. R. Forrest, Nat. Photonics 4, 371 (2010).
http://dx.doi.org/10.1038/nphoton.2010.86
7.
7. L. Mazza, L. Fontanesi, and G. C. La Rocca, Phys. Rev. B 80, 235314 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235314
8.
8. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, Phys. Rev. A 53, 4250 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.4250
9.
9. M. Maragkou, A. J. D. Grundy, T. Ostatnicky, and P. G. Lagoudakis, Appl. Phys. Lett. 97, 111110 (2010).
http://dx.doi.org/10.1063/1.3488012
10.
10. J. Chovan, I. E. Perakis, S. Ceccarelli, and D. G. Lidzey, Phys. Rev. B 78, 045320 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045320
11.
11. D. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, Adv. Funct. Mater. 21, 3691 (2011).
http://dx.doi.org/10.1002/adfm.201100756
12.
12. A. H. Herz, Photograph. Sci. Eng. 18, 323 (1974)
13.
13. D. N. Krizhanovskii, I. Tartakovskii, D. G. Lidzey, S. Walker, and M S. Skolnick, J. Appl. Phys. 93, 5003 (2003).
http://dx.doi.org/10.1063/1.1563826
14.
14. T. Kobayashi, in J-Aggregates, edited by T. Kobayashi (World Scientific, Singapore, 1996).
15.
15. G. Christmann, R. Butte, E. Feltin, J.-F. Carlin, and N. Grandjean, Appl. Phys. Lett. 93, 051102 (2008).
http://dx.doi.org/10.1063/1.2966369
16.
16. E. Bittner, S. Zaster, C. Silva, e-print arXiv:1103.1326v1, Dynamics of a polariton condensate in a Organic Semiconductor Microcavity (2011).
17.
17. F. Rossi and T. Kuhn, Rev. Mod. Phys. 74, 895 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.895
18.
18. H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. Phys. 95, 7880 (1991).
http://dx.doi.org/10.1063/1.461317
19.
19. V. Malyshev and P. Moreno, Phys. Rev. B 51, 14587 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.14587
20.
20. S. M. Vlaming, V. A. Malyshev, and J. Knoester, Phys. Rev. B 79, 205121 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205121
21.
21. H. Fidder, J. Terpstra, and D. A. Wiersma, J. Chem. Phys. 94, 6895 (1991).
http://dx.doi.org/10.1063/1.460220
22.
22. V. V. Egorov and M. V. Alfimov, Phys. Usp. 50, 985 (2007).
http://dx.doi.org/10.1070/PU2007v050n10ABEH006317
23.
23. G. M. Akserod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, Phys. Rev. B 82, 113106 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.113106
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3645633
Loading
/content/aip/journal/apl/99/14/10.1063/1.3645633
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/14/10.1063/1.3645633
2011-10-03
2014-07-25

Abstract

A key prerequisite for low-threshold polariton lasing in organic or inorganic microcavity systems is the efficient population of the lower polariton ground state. Here, we report the observation of a resonant phonon-mediated relaxation process which gives rise to nonthermal polariton population with sub 100 fs build-up times. This mechanism is manifested by discrete maxima of the angular-resolved photoluminescence intensity, with corresponding shortening of the photoluminescence rise time at respective phononresonances. The realization of enhanced relaxation rates in disordered J-aggregate systems is important for developing room temperature organic laser sources with less fabrication complexity than their crystalline counterparts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/14/1.3645633.html;jsessionid=1b97tyq6x98xg.x-aip-live-03?itemId=/content/aip/journal/apl/99/14/10.1063/1.3645633&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/14/10.1063/1.3645633
10.1063/1.3645633
SEARCH_EXPAND_ITEM