1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Method for measuring energy generation and efficiency of dielectric elastomer generators
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/16/10.1063/1.3653239
1.
1. R. Pelrine, R. D. Kornbluh, J. Eckerle, P. Jeuck, S. Oh, Q. Pei, and S. Stanford, Proc. SPIE 4329, 148 (2001).
http://dx.doi.org/10.1117/12.432640
2.
2. S. J. A. Koh, X. Zhao, and Z. Suo, Appl. Phys. Lett. 94, 262902 (2009).
http://dx.doi.org/10.1063/1.3167773
3.
3. R. Pelrine, R. D. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000).
http://dx.doi.org/10.1126/science.287.5454.836
4.
4. F. Carpi, S. Bauer, and D. De Rossi, Science 330, 1759 (2010).
http://dx.doi.org/10.1126/science.1194773
5.
5. R. D. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-Foy, B. McCoy, S. Kim, J. Eckerle, and T. Low, Proc. SPIE 7976, 797605 (2011).
http://dx.doi.org/10.1117/12.882367
6.
6. S. J. A. Koh, C. Keplinger, T. Li, S. Bauer, and Z. Suo, IEEE/ASME Trans. Mechatron. 16, 33 (2011).
http://dx.doi.org/10.1109/TMECH.2010.2089635
7.
7. T. McKay, B. O’Brien, E. Calius, and I. Anderson, Proc. SPIE 7642, 764216 (2010).
http://dx.doi.org/10.1117/12.847838
8.
8. T. McKay, B. M. O’Brien, E. Calius, and I. Anderson, Smart Mater. Struct. 19, 055025 (2010).
http://dx.doi.org/10.1088/0964-1726/19/5/055025
9.
9. T. G. McKay, B. M. O’Brien, E. P. Calius, and I. Anderson, Appl. Phys. Lett. 98, 142903 (2011).
http://dx.doi.org/10.1063/1.3572338
10.
10. C. Jean-Mistral, S. Basrour, and J.-J. Chaillout, Proc. SPIE 6927, 692716 (2008).
http://dx.doi.org/10.1117/12.776879
11.
11. C. Graf and J. Maas, Proc. SPIE 7976, 79760H (2011).
http://dx.doi.org/10.1117/12.879936
12.
12. J. W. Fox and N. Goulbourne, J. Mech. Phys. Solids 56, 2669 (2008).
http://dx.doi.org/10.1016/j.jmps.2008.03.007
13.
13. A. Koh, MRS Proc. 1218, 1218Z07 (2009).
http://dx.doi.org/10.1557/PROC-1218-Z07-10
14.
14. I. Müller and P. Strehlow, Rubber and Rubber Balloons: Paradigms of Thermodynamics (Lecture Notes In Physics 637) (Springer, Heidelberg, 2004), p. 4.
15.
15. J. G. Curro and P. Pincus, Macromolecules 16, 559 (1983).
http://dx.doi.org/10.1021/ma00238a014
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/16/10.1063/1.3653239
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Setup for monitoring electrical and mechanical energy flows in a dielectric elastomer generator. C in and C out serve as input and output charge reservoirs. Electrical and mechanical energy flows are recorded by contactless voltage measurements, pressure sensor readings, and video images of the elastomer shape. (b) Sketch of the electrical and mechanical energy flows in a DEG. Mechanical energy pdV is used to boost the electrical energy from Φin dQ to Φout dQ.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Rectangular energy conversion cycle operating between two charge reservoirs depicted in the work-conjugate (Φ,Q) plane. The cycle proceeds counterclockwise from state 1 to state 4. During the four steps of the cycle solid and dashed lines indicate the evolution of the balloon shape. In the constant voltage steps, 1 → 2 and 3 → 4, charges are taken from the low voltage reservoir and fed into the high voltage reservoir. In the constant charge steps 2 → 3 and 4 → 1, the voltage across the membrane is brought in line with the reservoirs. The area enclosed by the contour corresponds to the generated electrical energy ΔΦΔQ.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Time evolution of work-conjugate variables during one full conversion cycle. (a) Voltage Φm (top) and charge Q m (bottom) on the membrane. (b) Excess pressure p (top) and volume V (bottom) of the balloon. Dashed red lines with number labels correspond to the respective states in Fig. 2.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Measured cycle depicted in the (a) electrical and (b) mechanical work-conjugate plane. The areas enclosed by the contours correspond to (a) the generated electrical energy [156 mJ (102 mJ/g)] and (b) the used mechanical energy [2.08 J (1.36 J/g)].

Loading

Article metrics loading...

/content/aip/journal/apl/99/16/10.1063/1.3653239
2011-10-19
2014-04-20

Abstract

Dielectricelastomer generators convert mechanical into electrical energy at high energy density, showing promise for large and small scale energy harvesting. We present an experiment to monitor electrical and mechanical energy flows separately and show the cycle of energy conversion in work-conjugate planes. A specific electrical energy generated per cycle of , at a specific average power of , is demonstrated with an acrylic elastomer in a showcase generation cycle. The measured mechanical to electrical energy conversion efficiency is . The experiment may be used to assess the aptitude of specifically designed elastomers for energy harvesting.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/16/1.3653239.html;jsessionid=6no3h2te6jn3u.x-aip-live-02?itemId=/content/aip/journal/apl/99/16/10.1063/1.3653239&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Method for measuring energy generation and efficiency of dielectric elastomer generators
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/16/10.1063/1.3653239
10.1063/1.3653239
SEARCH_EXPAND_ITEM