1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Realization of high efficiency orange and white organic light emitting diodes by introducing an ultra-thin undoped orange emitting layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/16/10.1063/1.3654150
1.
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51(12 ), 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, Nature 459(7244 ), 234 (2009).
http://dx.doi.org/10.1038/nature08003
3.
3. R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, Appl. Phys. Lett. 68(9 ), 1192 (1996).
http://dx.doi.org/10.1063/1.115965
4.
4. J. Kido, M. Kimura, and K. Nagai, Science 267(5202 ), 1332 (1995).
http://dx.doi.org/10.1126/science.267.5202.1332
5.
5. B. W. D’Andrade, M. E. Thompson, and S. R. Forrest, Adv. Mater. 14(2 ), 147 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<>1.0.CO;2-#
6.
6. Y. R. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, Nature 440(7086 ), 908 (2006).
http://dx.doi.org/10.1038/nature04645
7.
7. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 64(7 ), 815 (1994).
http://dx.doi.org/10.1063/1.111023
8.
8. B. W. D’Andrade, R. J. Holmes, and S. R. Forrest, Adv. Mater. 16(7 ), 624 (2004).
http://dx.doi.org/10.1002/adma.v16:7
9.
9. Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, and F. Wang, Adv. Mater. 19, 84 (2009).
http://dx.doi.org/10.1002/adfm.200800918
10.
10. G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, and K. Leo, Adv. Mater. 19(21 ), 3672 (2007).
http://dx.doi.org/10.1002/adma.v19:21
11.
11. S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, Adv. Mater. 20(21 ), 4189 (2008).
http://dx.doi.org/10.1002/adma.200801375
12.
12. H. Sasabe, J.-i. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, Adv. Mater. 22(44 ), 5003 (2010).
http://dx.doi.org/10.1002/adma.201002254
13.
13. Y. Z. H. S. Yang, W. F. Xie, Y. W. Shi, W. Hu, Y. L. Meng, J. Y. Hou, and S. Y. Liu, Semicond. Sci. Technol. 21(10 ), 1447 (2006).
http://dx.doi.org/10.1088/0268-1242/21/10/014
14.
14. W. Li, Z. S. Su, M. L. Xu, T. L. Li, D. Wang, W. M. Su, J. H. Niu, H. He, J. Z. Zhu, and B. Chu, J. Phys. D: Appl. Phys. 40(9 ), 2783 (2007).
http://dx.doi.org/10.1088/0022-3727/40/9/017
15.
15. S. M. Chen, Z. Zhao, B. Z. Tang, and H. S. Kwok, J. Phys. D: Appl. Phys. 43(9 ), 095101 (2010).
http://dx.doi.org/10.1088/0022-3727/43/9/095101
16.
16. W. Li, Z. S. Su, M. L. Xu, T. L. Li, D. Wang, W. M. Su, J. H. Niu, H. He, J. Z. Zhu, and B. Chu, J. Phys. D: Appl. Phys. 41(8 ), 085103 (2008).
http://dx.doi.org/10.1088/0022-3727/41/8/085103
17.
17. T. Tsuji, S. Naka, H. Okada, and H. Onnagawa, Appl. Phys. Lett. 81(18 ), 3329 (2002).
http://dx.doi.org/10.1063/1.1516629
18.
18. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65(9 ), 3610 (1989).
http://dx.doi.org/10.1063/1.343409
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/16/10.1063/1.3654150
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) IV characteristics of OLEDs with (dash line) and without (solid line) ultra-thin orange EML. Inset shows the energy level alignment at TCTA/TmPyPB interface. (b) Normalized EL spectra of OLEDs with and without ultra-thin undoped orange EML. Inset gives the enlarged view of the EL spectra of the Orange OLED at the wavelength range from 380 nm to 480 nm.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Current density-voltage-luminance and (b) EQE and PE characteristics of OLEDs with ultrathin EML, high-doped EML, and equal amount molecules-doped EML.

Image of FIG. 3.

Click to view

FIG. 3.

Influence of the ultra-thin EML thickness on the performance of orange OLEDs. (a): IV, (b): EQE, (c): EL spectrum at low brightness, and (d): EL spectrum at high brightness.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) EQE of the four color white OLED and that of four monochrome OLEDs. (b) EL spectra of the white OLED at different luminance. (c) EL spectrum of the four color white OLED at 1 mA/cm2, the fitted white emission spectrum and the four monochrome OLEDs EL spectra.

Loading

Article metrics loading...

/content/aip/journal/apl/99/16/10.1063/1.3654150
2011-10-19
2014-04-24

Abstract

In this paper, we report on high efficiency orange and white organic light emitting diodes(OLEDs) by introducing an ultra-thin undoped orange emitting layer (less than 1 nm) adjacent to the electron-transporting layer. The orange OLEDs showed a high external quantum efficiency (EQE) of 16.4% at 1000 cd/m2, and the resulting four-color white OLEDs emitted an EQE of 15.5% and a maximum color render index (CRI) of 87 at luminance of 1000 cd/m2. Further analysis on the EQE of the white OLEDs makes us confident that this design has the possibility to realize 100% internal quantum efficiency (IQE) by using much more highly efficient phosphorescent emitters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/16/1.3654150.html;jsessionid=22a1oq9aaorf7.x-aip-live-02?itemId=/content/aip/journal/apl/99/16/10.1063/1.3654150&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Realization of high efficiency orange and white organic light emitting diodes by introducing an ultra-thin undoped orange emitting layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/16/10.1063/1.3654150
10.1063/1.3654150
SEARCH_EXPAND_ITEM