1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/18/10.1063/1.3656973
1.
1. G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, and A. Labouret, J. Mater. Res. 20, 3224 (2005).
http://dx.doi.org/10.1557/jmr.2005.0399
2.
2. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem. 19, 5442 (2009).
http://dx.doi.org/10.1039/b823001c
3.
3. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 689 (2008).
http://dx.doi.org/10.1021/nl073296g
4.
4. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, ACS Nano 4, 2955 (2010).
http://dx.doi.org/10.1021/nn1005232
5.
5. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, Nano Lett. 10, 4242 (2010).
http://dx.doi.org/10.1021/nl102725k
6.
6. X.-Y. Zeng, Q.-K. Zhang, R.-M. Yu, and C.-Z. Lu, Adv. Mater. 22, 4484 (2010).
http://dx.doi.org/10.1002/adma.201001811
7.
7. S. De, T. Higgins, P. Lyons, E. Doherty, P. Nirmalraj, W. Blau, J. Boland, and J. N. Coleman, ACS Nano 3, 1767 (2009).
http://dx.doi.org/10.1021/nn900348c
8.
8. H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, J. Am. Chem. Soc. 129, 7758 (2007).
http://dx.doi.org/10.1021/ja0722224
9.
9. J. Wang, F. Gao, T. Hallam, and N. C. Greenham, J. Phys.: Condens. Matter 22, 395009 (2010).
http://dx.doi.org/10.1088/0953-8984/22/39/395009
10.
10. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).
http://dx.doi.org/10.1063/1.3039076
11.
11. C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett 94, 043311 (2009).
http://dx.doi.org/10.1063/1.3076134
12.
12. Y. Vaynzof, D. Kabra, L. Zhao, L. L. Chua, U. Steiner, and R. H. Friend, ACS Nano 5, 329 (2011).
http://dx.doi.org/10.1021/nn102899g
13.
13. Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, Nano Lett. 8, 1649 (2008).
http://dx.doi.org/10.1021/nl0803702
14.
14. D. Kabra and K. Narayan, Adv. Mater. 19, 1465 (2007).
http://dx.doi.org/10.1002/adma.v19:11
15.
15. C. McNeill, H. Frohne, J. Holdsworth, and P. Dastoor, Nano Lett. 4, 2503 (2004).
http://dx.doi.org/10.1021/nl048590c
16.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/18/10.1063/1.3656973
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Device structure of a bulk heterojunction inverted solar cell using a ZnO nanoparticle coated Ag-NW film as the transparent electrode.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) UV-Vis spectrum of Ag-NW substrates (dashed curve) and ZnO-NP coated Ag-NW substrates (solid curve). The dotted curve shows the UV-Vis spectrum of a plain 70 nm ZnO-NP film after annealing. Inset: sheet resistance measured at room temperature of both plain and ZnO-NP coated Ag-NW films after annealing for 2 min at increasing temperatures.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Sheet resistance RS of blank and encapsulated Al/ZnO-NP/Al channels measured under AM 1.5 conditions passed through different UV long-pass filters. (b) Spectrally resolved EQE of a AgNW:ZnO-NP/P3HT:PCBM/MoO3/Ag device before, during, and after UV illumination using a 365 nm UV lamp at 3 W/m2 power density.

Image of FIG. 4.

Click to view

FIG. 4.

(Color) (a) Two dimensional reflected photoluminescence of a Ag-NW:ZnO-NP/P3HT:PCBM/MoO3/Ag device. Nanowires close to the surface appear dark (less reflection). (b) Superposition of reflected photoluminescence with the spatially resolved photocurrent of the same region. A correlation between nanowires (less reflective regions) and photoactive regions (green) is visible. (c) Scanning photocurrent microscopy images taken without (left) and with (right) UV backlight illumination of the same area.

Loading

Article metrics loading...

/content/aip/journal/apl/99/18/10.1063/1.3656973
2011-11-02
2014-04-24

Abstract

We demonstrate that solution-processible silver-nanowire films coated with zinc-oxide-nanoparticles (ZnO-NPs) can be used as transparent electrodes in organic photovoltaic devices. The ZnO-NP coating acts as electron extraction layer and as encapsulating agent, protecting the wires from oxidation and improving their mechanical stability. Scanning photocurrent microscopy showed photocurrent generation to be more efficient at the active material surrounding the wires. Ultra-violet illumination as present in the solar spectrum was found to enhance photocurrent by improving the ZnO in-layer conductivity through the photoconductive effect. Inverted polythiophene:fullerene devices using ZnO-NP coated silver-nanowires or indium-tin-oxide as transparent electrode reached power conversion efficiencies of 2.4%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/18/1.3656973.html;jsessionid=5srpljl00o3ca.x-aip-live-02?itemId=/content/aip/journal/apl/99/18/10.1063/1.3656973&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/18/10.1063/1.3656973
10.1063/1.3656973
SEARCH_EXPAND_ITEM