Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/99/20/10.1063/1.3660229
1.
1. N. A. Tulina and V. V. Sirotkin, Physica C 400, 105 (2004).
http://dx.doi.org/10.1016/j.physc.2003.07.002
2.
2. U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spigat, C. Wiemert, M. Peregot, and M. Fanciulli, IEEE IEDM 2007, (IEEE, New York, 2007), p.75, DOI: 10.1109/IEDM.2007.4419062.
3.
3. S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, B. Kahng, J. H. Jang, M. Y. Kim, D.-W. Kim, and C. U. Jung, Appl. Phys. Lett. 92, 183507 (2008).
http://dx.doi.org/10.1063/1.2924304
4.
4. S. F. Karg, G. I. Meijer, J. G. Bednorz, C. T. Rettner, A. G. Schrott, E. A. Joseph, C. H. Lam, M. Janousch, U. Staub, F. La Mattina et al., IBM J. Res. Dev. 52, 481 (2008).
http://dx.doi.org/10.1147/rd.524.0481
5.
5. J. L. Borghetti, D. M. Strukov, M. D. Pickett, J. J. Yang, and R. S. Williams, J. Appl. Phys. 106, 124504 (2009).
http://dx.doi.org/10.1063/1.3264621
6.
6. D. B. Strukov and R. S. Williams, Appl. Phys. A 94, 515 (2009).
http://dx.doi.org/10.1007/s00339-008-4975-3
7.
7. G. Bersuker, D. C. Gilmer, D. Veksler, J. Yum, H. Park, S. Lian, L. Vandelli, A. Padovanu, L. Larcher, K. McKenna et al., IEEE IEDM 2010 (IEEE, New York, 2010), p. 196, DOI: 10.1109/IEDM.2010.5703394
8.
8. A. Shkabko, M. H. Aguirre, I. Marozau, T. Lippert, and A. Weidenkaff, Appl. Phys. Lett. 95, 152109 (2009).
http://dx.doi.org/10.1063/1.3238563
9.
9. D. B. Strukov, J. L. Borghetti, and R. S. Williams, Small 5, 1058 (2009).
http://dx.doi.org/10.1002/smll.200801323
10.
10. J. P. Strachan, J. J. Yang, R. Muenstermann, A. Scholl, G. Medeiros-Ribeiro, D. R. Stewart, and R. S. Williams, Nanotechnology 20, 485701 (2009)
http://dx.doi.org/10.1088/0957-4484/20/48/485701
10. J. P. Strachan, D. B. Strukov, J. Borghetti, J. J. Yang, G. Medeiros-Ribeiro, and R. S. Williams, Nanotechnology 22, 254015 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254015
11.
11. S. Larentis, C. Cagli, F. Nardi, and D. Ielmini, Microelectron. Eng. 88, 1119 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.055
12.
12. G. Dearnaley, A. M. Stoneham, D. V. Morgan, Rep. Prog. Phys. 33, 1129 (1970).
http://dx.doi.org/10.1088/0034-4885/33/3/306
13.
13. H. Pagnia and N. Sotnik, Phys. Status Solidi A 108, 11 (1988).
http://dx.doi.org/10.1002/pssa.v108:1
14.
14. R. Waser, R. Dittman, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
15.
15. T. Kaplan and D. Adler, J. Non-Cryst. Solids 8–10, 538 (1972)
http://dx.doi.org/10.1016/0022-3093(72)90189-5
15. D. Adler, H. K. Henisch, and N. Mott, Rev. Mod. Phys. 50, 209 (1978).
http://dx.doi.org/10.1103/RevModPhys.50.209
16.
16. D. Ielmini, Phys. Rev. B 78, 035308 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035308
17.
17. J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau, and R. S. Williams, Nanotechnology 20, 215201 (2009).
http://dx.doi.org/10.1088/0957-4484/20/21/215201
18.
18. A. Sawa, Mater. Today 11, 28 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
19.
19. D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
20.
20. R. Waser and M. Aono, Nature Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
21.
21. D. S. Jeong, H. Schroeder, and R. Waser, Electrochem. Solid-State Lett. 10, G51 (2007).
http://dx.doi.org/10.1149/1.2742989
22.
22. L. Goux, J. G. Lisoni, M. Jurczak, D. J. Wouters, L. Courtade, and Ch. Muller, J. Appl. Phys. 107, 024512 (2010).
http://dx.doi.org/10.1063/1.3275426
23.
23. M. Pickett, J. Borghetti, J. Jang, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 23, 1730 (2011).
http://dx.doi.org/10.1002/adma.201004497
24.
24. Yu. A. Firsov, in Polarons in Advanced Materials, edited by A. S. Alexandrov (Springer, Dordrecht, 2007), Vol. 103, pp. 99100.
25.
25. V. N. Zavaritsky, Phys. Rev. Lett. 92, 259701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.259701
26.
26. A. Yildiz, F. Iacomi, and D. Mardare, J. Appl. Phys. 108, 083701 (2010).
http://dx.doi.org/10.1063/1.3493742
27.
27. J. J. Yang, J. P. Strachan, Q. Xia, D. A. A. Ohlberg, P. J. Kuekes, R. D. Kelley, W. F. Stickle, D. R. Stewart, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 22, 4034 (2010).
http://dx.doi.org/10.1002/adma.201000663
28.
28. M. Dawber, K. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.1083
29.
29. X. J. Lou, X. Hu, M. Zhang, S. A. T. Redfern, E. A. Kafadaryan, and J. F. Scott, Rev. Adv. Mater. Sci. 10, 197 (2005).
30.
30. J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000), Chap. 3
30. X. J. Lou, X. Hu, M. Zhang, F. D. Morrison, S. A. T. Redfern, J. F. Scott, J. Appl. Phys. 99, 044101 (2006).
http://dx.doi.org/10.1063/1.2171783
31.
31. A. S. Alexandrov and N. F. Mott, Polarons and Bipolarons (World Scientific, Singapore, 1995).
32.
32. T. Holstein, Ann. Phys. 8, 325 (1959)
http://dx.doi.org/10.1016/0003-4916(59)90002-8
32.T. Holstein, Ann. Phys. 8, 343 (1959).
http://dx.doi.org/10.1016/0003-4916(59)90003-X
33.
33. V. N. Bogomolov, Yu. A. Firsov, E. K. Kudinov, and D. N. Mirlin, Phys. Status Solidi B 35, 555 (1969).
http://dx.doi.org/10.1002/pssb.v35:2
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/20/10.1063/1.3660229
Loading
/content/aip/journal/apl/99/20/10.1063/1.3660229
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/20/10.1063/1.3660229
2011-11-15
2016-09-25

Abstract

We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 by constructing an analytical model of the voltage-current V(I) characteristic based on polaronic transport for Ohm’s Law and Newton’s Law of Cooling and fitting this model to experimental data. This threshold switching is the “soft breakdown” observed during electroforming of TiO2 and other transition-metal-oxide based memristors, as well as a precursor to “ON” or “SET” switching of unipolar memristors from their high to their low resistance states. The shape of the V(I) curve is a sensitive indicator of the nature of the polaronic conduction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/20/1.3660229.html;jsessionid=UbbRbVyQl11i30aLUjrgUumV.x-aip-live-06?itemId=/content/aip/journal/apl/99/20/10.1063/1.3660229&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/99/20/10.1063/1.3660229&pageURL=http://scitation.aip.org/content/aip/journal/apl/99/20/10.1063/1.3660229'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,