1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Doping profile of InP nanowires directly imaged by photoemission electron microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/23/10.1063/1.3662933
1.
1. K. Storm, G. Nylund, M. T. Borgström, J. Wallentin, C. Fasth, C. Thelander, and L. Samuelson, Nano Lett. 11, 1127 (2011).
http://dx.doi.org/10.1021/nl104032s
2.
2. X. Tang, V. K. De, and J. D. Meindl, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5, 369 (1997).
http://dx.doi.org/10.1109/92.645063
3.
3. Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000).
http://dx.doi.org/10.1021/jp0009305
4.
4. D. R. Khanal and J. Wu, Nano Lett. 7, 2778 (2007).
http://dx.doi.org/10.1021/nl071330l
5.
5. O. Wunnicke, Appl. Phys. Lett. 89, 083102 (2006).
http://dx.doi.org/10.1063/1.2337853
6.
6. A. Gustafsson, M. T. Björk, and L. Samuelson, Nanotechnology 18, 205306 (2007).
http://dx.doi.org/10.1088/0957-4484/18/20/205306
7.
7. J. E. Allen, D. E. Perea, E. R. Hemesath, and L. J. Lauhon, Adv. Mater. 21, 3067 (2009).
http://dx.doi.org/10.1002/adma.200803865
8.
8. V. Palermo, M. Palma, and P. Samorì, Adv. Mater. 18, 145 (2006).
http://dx.doi.org/10.1002/adma.v18:2
9.
9. S. Schäfer, Z. Wang, R. Zierold, T. Kipp, and A. Mews, Nano Lett. 11, 2672 (2011).
http://dx.doi.org/10.1021/nl200770h
10.
10. A. Kolmakov, U. Lanke, R. Karam, J. Shin, S. Jesse, and S. V. Kalinin, Nanotechnology 17, 4014 (2006).
http://dx.doi.org/10.1088/0957-4484/17/16/003
11.
11. J. Wallentin, J. M. Persson, J. B. Wagner, L. Samuelson, K. Deppert, and M. T. Borgström, Nano Lett. 101, 974 (2010).
http://dx.doi.org/10.1021/nl903941b
12.
12. E. Hilner, U. Håkanson, L. E. Fröberg, M. Karlsson, P. Kratzer, E. Lundgren, L. Samuelson, and A. Mikkelsen, Nano Lett. 8, 3978 (2008).
http://dx.doi.org/10.1021/nl802500d
13.
13. V. W. Ballarotto, K. Siegrist, R. J. Phaneuf, and E. D. Williams, J. Appl. Phys. 91, 469 (2002).
http://dx.doi.org/10.1063/1.1423399
14.
14. I. Müllerová, M. M. El-Gomati, and L. Frank, Ultramicroscopy 93, 223 (2002).
http://dx.doi.org/10.1016/S0304-3991(02)00279-6
15.
15. C. P. Sealy, M. R. Castell, and P. R. Wilshaw, J. Electron. Microsc. 49, 311 (2000).
16.
16. G. H. Jayakody, T. R. C Wells, and M. M. El-Gomati, J. Electron. Spectrosc. Relat. Phenom. 143, 235 (2005).
http://dx.doi.org/10.1016/j.elspec.2004.09.025
17.
17. P. Kazemian, S. A. M. Mentink, C. Rodenburg, and C. J. Humphreys, J. Appl. Phys. 100, 054901 (2006).
http://dx.doi.org/10.1063/1.2335980
18.
18. S. L. Elliott, R. F. Broom, and C. J. Humphreys, J. Appl. Phys. 91, 9116 (2002).
http://dx.doi.org/10.1063/1.1476968
19.
19. M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. Bakkers, J. Am. Chem. Soc. 131, 4578 (2009).
http://dx.doi.org/10.1021/ja809871j
20.
20. J. Wallentin, M. Ek, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Electron trapping in InP nanowire FETs with stacking faults, Nano Letters” (in press).
21.
21. J. Wallentin, M. E. Messing, W. Trygg, L. Samuelson, K. Deppert, and M. T. Borgström, J. Cryst. Growth 331, 8 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.07.002
22.
22. R. M. Tromp, J. B. Hannon, A. W. Ellis, W. Wan, A. Berghaus, and O. Schaff, Ultramicroscopy 110, 852 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.03.005
23.
23. M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, Nanotechnology 19, 445602 (2008).
http://dx.doi.org/10.1088/0957-4484/19/44/445602
24.
24. C.-Y. Wu, Solid-State Electron. 23, 641 (1980).
http://dx.doi.org/10.1016/0038-1101(80)90049-0
25.
25. J. R. Hauser and M. A. Littlejohn, Solid-State Electron. 11, 667 (1968).
http://dx.doi.org/10.1016/0038-1101(68)90069-5
26.
26. P. A. Lane, C. R. Whitehouse, T. Martin, M. Houlton, G. M. Williams, A. G. Cullis, S. S. Gill, J. R. Dawsey, G. Ball, B. T. Hughes, M. A. Crouch, and M. B. Allenson, J. Cryst. Growth 120, 245 (1992).
http://dx.doi.org/10.1016/0022-0248(92)90398-3
27.
27. H. Grönbeck, A. Curioni, and W. Andreoni, J. Am. Chem. Soc. 122, 3839 (2000).
http://dx.doi.org/10.1021/ja993622x
28.
28. G. Liu, J. A. Rodriguez, J. Dvorak, J. Hrbek, and T. Jirsak, Surf. Sci. 505, 295 (2002).
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/23/10.1063/1.3662933
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (A) Schematic of an n-i-n-doped InP NW. (B) SE image of a native oxide covered NW showing a bright undoped segment (hν = 70 eV, kinetic energy (KE) = 0.9 eV). (C) XPEEM image using electrons from the In 4d core level of the NW (hν = 70 eV, KE = 47.3 eV). (D) Mirror mode image of an uncleaned NW. (E) Schematic energy band diagram showing the SE emission process as described in Ref. 15. The ionization energies for the two segments are equal (En = Ei ), and the vacuum level potential (Evac ) is non-uniform outside the sample. Thus, electrons from the n-type part need ΔEn more energy to reach the detector energy level (EDetector ). Ec , Ev , and EF denote the conduction band edge, valence band edge, and Fermi level, respectively. The false color code in (B, C) depicts the photoelectron intensity with increasing intensity: black-green-yellow-red in the online figure (intrinsic segment in (B) is brightest).

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (A) SE image of a cleaned InP n-i-n-NW (hν = 133 eV, KE 0 eV). (B) Intensity profile along the marked line in (A). The dotted lines mark the two space charge regions (SCRs): The left SCR is 300 nm wide and the right SCR is 200 nm. The Au-particle can be found at the far right in the image.

Loading

Article metrics loading...

/content/aip/journal/apl/99/23/10.1063/1.3662933
2011-12-09
2014-04-23

Abstract

InPnanowires (NWs) with differently doped segments were studied with nanoscale resolution using synchrotron based photoemission electron microscopy. We clearly resolved axially stacked n-type and undoped segments of the NWs without the need of additional processing or contacting. The lengths and relative doping levels of different NW segments as well as space charge regions were determined indicating memory effects of sulfur during growth. The surface chemistry of the nanowires was monitored simultaneously, showing that in the present case, the doping contrast was independent of the presence or absence of a native oxide.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/23/1.3662933.html;jsessionid=4ele3hanln1e5.x-aip-live-01?itemId=/content/aip/journal/apl/99/23/10.1063/1.3662933&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Doping profile of InP nanowires directly imaged by photoemission electron microscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/23/10.1063/1.3662933
10.1063/1.3662933
SEARCH_EXPAND_ITEM