1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High-performance nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polymethylmethacrylate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/23/10.1063/1.3665937
1.
1. J. J. Kim, B. Cho, K. S. Kim, T. Lee, and G. Y. Jung, Adv. Mater. 23, 2104 (2011).
http://dx.doi.org/10.1002/adma.201100081
2.
2. J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.v19:11
3.
3. D. Prime and S. Paul, Philos. Trans. R. Soc. London, Ser. A 367, 4141 (2009).
http://dx.doi.org/10.1098/rsta.2009.0165
4.
4. Y. Ji, S. Lee, B. Cho, S. Song, and T. Lee, ACS Nano 5, 5995 (2011).
http://dx.doi.org/10.1021/nn201770s
5.
5. M. A. Mamo, W. S. Machado, W. A. L. van Otterlo, and N. J. Coville, Org. Electron. 11, 1858 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.08.013
6.
6. J. Leppaniemi, M. Aronniemi, T. Mattila, A. Alastalo, M. Allen, and H. Seppa, IEEE Trans. Electron Devices 58, 151 (2011).
http://dx.doi.org/10.1109/TED.2010.2088402
7.
7. K. H. Park, J. H. Jung, F. Li, D. I. Son, and T. W. Kim, Appl. Phys. Lett. 93, 123104 (2008).
http://dx.doi.org/10.1063/1.2990624
8.
8. D. I. Son, C. H. You, W. T. Kim, J. H. Jung, and T. W. Kim, Appl. Phys. Lett. 94, 132103 (2009).
http://dx.doi.org/10.1063/1.3111445
9.
9. Z. L. Tseng, P. C. Kao, M. F. Shih, H. H. Huang, J. Y. Wang, and S. Y. Chu, Appl. Phys. Lett. 97, 212103 (2010).
http://dx.doi.org/10.1063/1.3511756
10.
10. F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, J. Appl. Phys. 102, 083701 (2007).
http://dx.doi.org/10.1063/1.2794475
11.
11. D. Y. Yun, J. K. Kwak, J. H. Jung, T. W. Kim, and D. I. Son, Appl. Phys. Lett. 95, 143301 (2009).
http://dx.doi.org/10.1063/1.3243463
12.
12. H. Zhang, L. Liu, B. Gao, Y. Qiu, Z. Liu, J. Lu, R. Han, J. Kang, and B. Yu, Appl. Phys. Lett. 98, 042105 (2011).
http://dx.doi.org/10.1063/1.3543837
13.
13. T. V. Thu and S. Maenosono, J. Appl. Phys. 107, 014308 (2010).
http://dx.doi.org/10.1063/1.3273501
14.
14.See supplementary material at http://dx.doi.org/10.1063/1.3665937 for ZnO NP synthesis, emission image microscopy, cross-sectional TEM measurement method, STEM-HAADF images EDS data, and a histogram of Vth. [Supplementary Material]
15.
15. T.-S. Huang, Y.-K. Su, and P.-C. Wang, Appl. Phys. Lett. 91, 092116 (2007).
http://dx.doi.org/10.1063/1.2775333
16.
16. B. Cho, T.-W. Kim, M. Choe, G. Wang, S. Song, and T. Lee, Org. Electron. 10, 473 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.02.001
17.
17. M. Colle, M. Buchel, and D. M. de Leeuw, Org. Electron. 7, 305 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.03.014
18.
18. H.-T. Lin, C.-Y. Lin, Z. Pei, J.-R. Chen, Y.-J. Chan, Y.-H. Yeh, and C.-C. Wu, Org. Electron. 12, 1632 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.06.008
19.
19. Y. Luo and N. Miura, in Proc. ASID 2004: Proceedings of the 8th Asian Symposium on Information Display, Nanjing, China, Society for Information Display, USA, February 15-17, 2004, pp. 485-488.
20.
20. C.-Y. Lee, Y.-T. Haung, W.-F. Su, and C.-F. Lin, Appl. Phys. Lett. 89, 231116 (2009).
http://dx.doi.org/10.1063/1.2404614
21.
21. Y. Kinoshita, T. Hasobe, and H. Murata, Appl. Phys. Lett. 91, 083518 (2007).
http://dx.doi.org/10.1063/1.2775085
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/23/10.1063/1.3665937
Loading
/content/aip/journal/apl/99/23/10.1063/1.3665937
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/23/10.1063/1.3665937
2011-12-06
2014-09-02

Abstract

A mixture of ZnOnanoparticles and polymethylmethacrylate was used as an active layer in a nonvolatile resistivememory device. Current-voltage characteristics of the device showed nonvolatile write-once-read-many-times memory behavior with a switching time on the order of μs. The device exhibited an on/off ratio of 104, retention time of >105 s, and number of readout of >4 × 104 times under a read voltage of 0.5 V. The emission, cross-sectional high-resolution transmission electron microscopy (TEM), scanning TEM-high angle annular dark field imaging, and energy dispersive x-ray spectroscopy elemental mapping measurements suggest that the electrical switching originates from the formation of conduction paths.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/23/1.3665937.html;jsessionid=1ng6nx55bokqa.x-aip-live-03?itemId=/content/aip/journal/apl/99/23/10.1063/1.3665937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-performance nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polymethylmethacrylate
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/23/10.1063/1.3665937
10.1063/1.3665937
SEARCH_EXPAND_ITEM