1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends: Implications for organic solar cell efficiency
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/23/10.1063/1.3670043
1.
1. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Adv. Mater. 22, 3839 (2010).
http://dx.doi.org/10.1002/adma.200903697
2.
2. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
3.
3. M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
4.
4. J. J. Benson-Smith, L. Goris, K. Vandewal, K. Haenen, J. V. Manca, D. Vanderzande, D. D. C. Bradley, and J. Nelson, Adv. Funct. Mater. 17, 451 (2007).
http://dx.doi.org/10.1002/adfm.v17:3
5.
5. T. Drori, C.-X. Sheng, A. Ndobe, S. Singh, and Z. V. Vardeny, Phys. Rev. Lett. 101, 037401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.037401
6.
6. T. Drori, J. Holt, and Z. V. Vardeny, Phys. Rev. B 82, 075207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075207
7.
7. M. Vanecek and A. Poruba, Appl. Phys. Lett. 80, 719 (2002).
http://dx.doi.org/10.1063/1.1446207
8.
8. K. Vandewal, L. Goris, I. Haeldermans, M. Nesladek, K. Haenen, P. Wagner, and J. V. Manca Thin Solid Films 516, 7135 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.056
9.
9. L. Goris, A. Poruba, L. Hod’akova, M. Vanecek, K. Haenen, M. Nesladek, P. Wagner, D. Vanderzande, L. De Schepper, and J. V. Manca, Appl. Phys. Lett. 88, 052113 (2006).
http://dx.doi.org/10.1063/1.2171492
10.
10. K. Vandewal, A. Gadisa, W. D. Oosterbaan, S. Bertho, F. Banishoeib, I. V. Severen, L. Lutsen, T. J. Cleij, D. Vanderzande, and J. V. Manca, Adv. Funct. Mater. 18, 2064 (2008).
http://dx.doi.org/10.1002/adfm.200800056
11.
11. K. Zhang and B. Tieke, Macromolecules 41, 7287 (2008).
http://dx.doi.org/10.1021/ma801376r
12.
12. P. Sonar, S. P. Singh, Y. Li, M. S. Soh, and A. Dodabalapur, Adv. Mater. 22, 5409 (2010).
http://dx.doi.org/10.1002/adma.201002973
13.
13. A. P. Zoombelt, S. G. J. Mathijssen, M. G. R. Turbiez, M. M. Wienk, and R. A. J. Janssen, J. Mater. Chem. 20, 2240 (2010).
http://dx.doi.org/10.1039/b919066j
14.
14. B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, and T. Q. Nguyen, Adv. Funct. Mater. 19, 3063 (2009).
http://dx.doi.org/10.1002/adfm.200900832
15.
15. D. Adil, C. Kanimozhi, N. B. Ukah, K. Paudel, S. Patil, and S. Guha, ACS Appl. Mater. Interfaces 3, 1463 (2011).
http://dx.doi.org/10.1021/am200028u
16.
16. C. Kanimozhi, P. Balraju, G. D. Sharma, and S. Patil, J. Phys. Chem. B 114, 3095 (2010).
http://dx.doi.org/10.1021/jp909183x
17.
17. K. Vandewal, W. D. Oosterbaan, S. Bertho, V. Vrindts, A. Gadisa, L. Lutsen, D. Vanderzande, and J. V. Manca, Appl. Phys. Lett. 95, 123303 (2009).
http://dx.doi.org/10.1063/1.3232242
18.
18. M. A. Loi, S. Toffanin, M. Muccini, M. Forster, U. Scherf, and M. Scharber, Adv. Funct. Mater. 17, 2111 (2007).
http://dx.doi.org/10.1002/adfm.v17:13
19.
19. Y. T. Chang, S. L. Hsu, G. Y. Chen, M. H. Su, T. A. Singh, E. W. G. Diau, and K. H. Wei, Adv. Funct. Mater. 18, 2356 (2008).
http://dx.doi.org/10.1002/adfm.200701150
20.
20. J. J. M. Halls, J. Cornil, D. A. dos Santos, R. Silbey, D.-H. Hwang, A. B. Holmes, J. L. Brédas, and R. H. Friend, Phys. Rev. B 60, 5721 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.5721
21.
21. Y. W. Soon, T. M. Clarke, W. Zhang, T. Agostinelli, J. Kirkpatrick, C. Dyer-Smith, I. McCulloch, J. Nelson, and J. R. Durrant, Chem. Sci. 2, 1111 (2011).
http://dx.doi.org/10.1039/c0sc00606h
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/23/10.1063/1.3670043
Loading
/content/aip/journal/apl/99/23/10.1063/1.3670043
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/23/10.1063/1.3670043
2011-12-09
2014-08-23

Abstract

The spectralphotocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT:PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT:PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/23/1.3670043.html;jsessionid=2ic07cf6ei5ih.x-aip-live-02?itemId=/content/aip/journal/apl/99/23/10.1063/1.3670043&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends: Implications for organic solar cell efficiency
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/23/10.1063/1.3670043
10.1063/1.3670043
SEARCH_EXPAND_ITEM