1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends: Implications for organic solar cell efficiency
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/23/10.1063/1.3670043
1.
1. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Adv. Mater. 22, 3839 (2010).
http://dx.doi.org/10.1002/adma.200903697
2.
2. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
3.
3. M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
4.
4. J. J. Benson-Smith, L. Goris, K. Vandewal, K. Haenen, J. V. Manca, D. Vanderzande, D. D. C. Bradley, and J. Nelson, Adv. Funct. Mater. 17, 451 (2007).
http://dx.doi.org/10.1002/adfm.v17:3
5.
5. T. Drori, C.-X. Sheng, A. Ndobe, S. Singh, and Z. V. Vardeny, Phys. Rev. Lett. 101, 037401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.037401
6.
6. T. Drori, J. Holt, and Z. V. Vardeny, Phys. Rev. B 82, 075207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075207
7.
7. M. Vanecek and A. Poruba, Appl. Phys. Lett. 80, 719 (2002).
http://dx.doi.org/10.1063/1.1446207
8.
8. K. Vandewal, L. Goris, I. Haeldermans, M. Nesladek, K. Haenen, P. Wagner, and J. V. Manca Thin Solid Films 516, 7135 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.056
9.
9. L. Goris, A. Poruba, L. Hod’akova, M. Vanecek, K. Haenen, M. Nesladek, P. Wagner, D. Vanderzande, L. De Schepper, and J. V. Manca, Appl. Phys. Lett. 88, 052113 (2006).
http://dx.doi.org/10.1063/1.2171492
10.
10. K. Vandewal, A. Gadisa, W. D. Oosterbaan, S. Bertho, F. Banishoeib, I. V. Severen, L. Lutsen, T. J. Cleij, D. Vanderzande, and J. V. Manca, Adv. Funct. Mater. 18, 2064 (2008).
http://dx.doi.org/10.1002/adfm.200800056
11.
11. K. Zhang and B. Tieke, Macromolecules 41, 7287 (2008).
http://dx.doi.org/10.1021/ma801376r
12.
12. P. Sonar, S. P. Singh, Y. Li, M. S. Soh, and A. Dodabalapur, Adv. Mater. 22, 5409 (2010).
http://dx.doi.org/10.1002/adma.201002973
13.
13. A. P. Zoombelt, S. G. J. Mathijssen, M. G. R. Turbiez, M. M. Wienk, and R. A. J. Janssen, J. Mater. Chem. 20, 2240 (2010).
http://dx.doi.org/10.1039/b919066j
14.
14. B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, and T. Q. Nguyen, Adv. Funct. Mater. 19, 3063 (2009).
http://dx.doi.org/10.1002/adfm.200900832
15.
15. D. Adil, C. Kanimozhi, N. B. Ukah, K. Paudel, S. Patil, and S. Guha, ACS Appl. Mater. Interfaces 3, 1463 (2011).
http://dx.doi.org/10.1021/am200028u
16.
16. C. Kanimozhi, P. Balraju, G. D. Sharma, and S. Patil, J. Phys. Chem. B 114, 3095 (2010).
http://dx.doi.org/10.1021/jp909183x
17.
17. K. Vandewal, W. D. Oosterbaan, S. Bertho, V. Vrindts, A. Gadisa, L. Lutsen, D. Vanderzande, and J. V. Manca, Appl. Phys. Lett. 95, 123303 (2009).
http://dx.doi.org/10.1063/1.3232242
18.
18. M. A. Loi, S. Toffanin, M. Muccini, M. Forster, U. Scherf, and M. Scharber, Adv. Funct. Mater. 17, 2111 (2007).
http://dx.doi.org/10.1002/adfm.v17:13
19.
19. Y. T. Chang, S. L. Hsu, G. Y. Chen, M. H. Su, T. A. Singh, E. W. G. Diau, and K. H. Wei, Adv. Funct. Mater. 18, 2356 (2008).
http://dx.doi.org/10.1002/adfm.200701150
20.
20. J. J. M. Halls, J. Cornil, D. A. dos Santos, R. Silbey, D.-H. Hwang, A. B. Holmes, J. L. Brédas, and R. H. Friend, Phys. Rev. B 60, 5721 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.5721
21.
21. Y. W. Soon, T. M. Clarke, W. Zhang, T. Agostinelli, J. Kirkpatrick, C. Dyer-Smith, I. McCulloch, J. Nelson, and J. R. Durrant, Chem. Sci. 2, 1111 (2011).
http://dx.doi.org/10.1039/c0sc00606h
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/23/10.1063/1.3670043
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) The singlet state (S1) energies of P3HT, PDPP-BBT, TDPP-BBT, and PCBM are shown. The difference between the S1 energies of the donor polymers with respect to PCBM, and the relative position of the CTC state (dashed blue line) are schematically shown. The chemical structures of the two copolymers are shown below.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Normalized EQE spectra measured by FTPS for PDPP-BBT:PCBM (1:1) device. The red dotted line is a fit to the FTPS spectrum to obtain the value of ECT. The inset shows the PC responsivity (dotted lines) and the absorption spectra (bold lines) from both samples 1 and 2. (b) Normalized EQE measured by FTPS for TDPP-BBT:PCBM (1:1) and (1:2) devices; absorption spectrum of the 1:1 sample is plotted by the dashed line. The inset plots the PC responsivity and the absorption spectra from the 1:1 sample.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Normalized EQE spectra measured by FTPS/PC and the absorption spectrum from a P3HT:PCBM (1:1) photovoltaic device.

Tables

Generic image for table

Click to view

Table I.

Energy of the CTC states obtained by fits to the FTPS and PC spectra using the Marcus theory. The absorption onset energy for all three blends is noted in the fourth column. The last column lists the power conversion efficiency of the DPP-based solar cells.

Loading

Article metrics loading...

/content/aip/journal/apl/99/23/10.1063/1.3670043
2011-12-09
2014-04-16

Abstract

The spectralphotocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT:PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT:PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/23/1.3670043.html;jsessionid=xhe26703vm9j.x-aip-live-06?itemId=/content/aip/journal/apl/99/23/10.1063/1.3670043&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends: Implications for organic solar cell efficiency
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/23/10.1063/1.3670043
10.1063/1.3670043
SEARCH_EXPAND_ITEM