1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/26/10.1063/1.3672045
1.
1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1667
2.
2. S. Nie and S. R. Emory, Science 275, 1102 (1997).
http://dx.doi.org/10.1126/science.275.5303.1102
3.
3. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, Nat. Nanotechnol. 6, 268 (2011).
http://dx.doi.org/10.1038/nnano.2011.49
4.
4. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev. 111, 3669 (2011).
http://dx.doi.org/10.1021/cr100275d
5.
5. M. J. Natan, Faraday Discuss. 132, 321 (2006).
http://dx.doi.org/10.1039/b601494c
6.
6. J. Zuloaga, E. Prodan, and P. Nordlander, Nano Lett. 9, 887 (2009).
http://dx.doi.org/10.1021/nl803811g
7.
7. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, Nano Lett. 10, 2231 (2010).
http://dx.doi.org/10.1021/nl1012085
8.
8. A. Otto, J. Raman Spectrosc. 37, 937 (2006).
http://dx.doi.org/10.1002/jrs.v37:9
9.
9. H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, ACS Nano 5, 7593 (2011).
http://dx.doi.org/10.1021/nn2025868
10.
10. W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, Small 7, 1761 (2010).
11.
11. R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, Nanotechnology 22, 105303 (2011).
http://dx.doi.org/10.1088/0957-4484/22/10/105303
12.
12. H. Duan, V. R. Manfrinato, J. K. W. Yang, D. Winston, B. M. Cord, and K. K. Berggren, J. Vac. Sci. Technol. B 28, C6H11 (2010).
http://dx.doi.org/10.1116/1.3501359
13.
13. G. S. McCarty, Nano Lett. 4, 1391 (2004).
http://dx.doi.org/10.1021/nl049375z
14.
14. R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, Appl. Phys. Lett. 88, 223111 (2006).
http://dx.doi.org/10.1063/1.2209208
15.
15. V. Auzelyte, C. Dais, P. Farquet, D. Grutzmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson et al., J. Micro/Nanolith. MEMS MOEMS 8, 021204 (2009).
http://dx.doi.org/10.1117/1.3116559
16.
16. B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, Nanotechnology 22, 375302 (2011).
http://dx.doi.org/10.1088/0957-4484/22/37/375302
17.
17. V. Auzelyte, H. H. Solak, Y. Ekinci, R. MacKenzie, J. Vörös, S. Olliges, and R. Spolenak, Microelectron. Eng. 85, 1131 (2008).
http://dx.doi.org/10.1016/j.mee.2008.01.064
18.
18. J. G. Bai, W. H. Yeo, and J. H. Chung, Lab Chip 9, 449 (2009).
http://dx.doi.org/10.1039/b811400e
19.
19. S. Müller-Pfeiffer, H. van Kranenburg, and J. C. Lodder, Thin Solid Films 213, 143 (1992).
http://dx.doi.org/10.1016/0040-6090(92)90489-X
20.
20. K. Naoto, E. Akinori, O. Kiyoshi, S. Ippei, S. Yuichi, and M. Shoji, J. Vac. Sci. Technol. A 19, 153 (2001).
21.
21. M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).
http://dx.doi.org/10.1002/jrs.v36:6/7
22.
22. T. Ishida, Y. Nakajima, J. Endo, D. Collard, and H. Fujita, Nanotechnology 20, 065705 (2009).
http://dx.doi.org/10.1088/0957-4484/20/6/065705
23.
23. H. H. Solak, C. Dais, and F. Clube, Opt. Express 19, 10686 (2011).
http://dx.doi.org/10.1364/OE.19.010686
24.
24. C. Lu and R. H. Lipson, Laser Photonics Rev. 4, 568 (2009).
http://dx.doi.org/10.1002/lpor.200810061
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/26/10.1063/1.3672045
Loading
/content/aip/journal/apl/99/26/10.1063/1.3672045
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/26/10.1063/1.3672045
2011-12-27
2014-08-28

Abstract

We report a high-throughput method for the fabrication of metallic nanogap arrays with high-accuracy over large areas. This method, based on shadow evaporation and interference lithography, achieves sub-10 nm gap sizes with a high accuracy of ±1.5 nm. Controlled fabrication is demonstrated over mm2 areas and for periods of 250 nm. Experiments complemented with numerical simulations indicate that the formation of nanogaps is a robust, self-limiting process that can be applied to wafer-scale substrates. Surface-enhanced Raman scattering(SERS) experiments illustrate the potential for plasmonic sensing with an exceptionally low standard-deviation of the SERS signal below 3% and average enhancement factors exceeding 1 × 106.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/26/1.3672045.html;jsessionid=7tt2jfme3590n.x-aip-live-02?itemId=/content/aip/journal/apl/99/26/10.1063/1.3672045&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/26/10.1063/1.3672045
10.1063/1.3672045
SEARCH_EXPAND_ITEM