1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/26/10.1063/1.3672045
1.
1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1667
2.
2. S. Nie and S. R. Emory, Science 275, 1102 (1997).
http://dx.doi.org/10.1126/science.275.5303.1102
3.
3. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, Nat. Nanotechnol. 6, 268 (2011).
http://dx.doi.org/10.1038/nnano.2011.49
4.
4. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev. 111, 3669 (2011).
http://dx.doi.org/10.1021/cr100275d
5.
5. M. J. Natan, Faraday Discuss. 132, 321 (2006).
http://dx.doi.org/10.1039/b601494c
6.
6. J. Zuloaga, E. Prodan, and P. Nordlander, Nano Lett. 9, 887 (2009).
http://dx.doi.org/10.1021/nl803811g
7.
7. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, Nano Lett. 10, 2231 (2010).
http://dx.doi.org/10.1021/nl1012085
8.
8. A. Otto, J. Raman Spectrosc. 37, 937 (2006).
http://dx.doi.org/10.1002/jrs.v37:9
9.
9. H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, ACS Nano 5, 7593 (2011).
http://dx.doi.org/10.1021/nn2025868
10.
10. W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, Small 7, 1761 (2010).
11.
11. R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, Nanotechnology 22, 105303 (2011).
http://dx.doi.org/10.1088/0957-4484/22/10/105303
12.
12. H. Duan, V. R. Manfrinato, J. K. W. Yang, D. Winston, B. M. Cord, and K. K. Berggren, J. Vac. Sci. Technol. B 28, C6H11 (2010).
http://dx.doi.org/10.1116/1.3501359
13.
13. G. S. McCarty, Nano Lett. 4, 1391 (2004).
http://dx.doi.org/10.1021/nl049375z
14.
14. R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, Appl. Phys. Lett. 88, 223111 (2006).
http://dx.doi.org/10.1063/1.2209208
15.
15. V. Auzelyte, C. Dais, P. Farquet, D. Grutzmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson et al., J. Micro/Nanolith. MEMS MOEMS 8, 021204 (2009).
http://dx.doi.org/10.1117/1.3116559
16.
16. B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, Nanotechnology 22, 375302 (2011).
http://dx.doi.org/10.1088/0957-4484/22/37/375302
17.
17. V. Auzelyte, H. H. Solak, Y. Ekinci, R. MacKenzie, J. Vörös, S. Olliges, and R. Spolenak, Microelectron. Eng. 85, 1131 (2008).
http://dx.doi.org/10.1016/j.mee.2008.01.064
18.
18. J. G. Bai, W. H. Yeo, and J. H. Chung, Lab Chip 9, 449 (2009).
http://dx.doi.org/10.1039/b811400e
19.
19. S. Müller-Pfeiffer, H. van Kranenburg, and J. C. Lodder, Thin Solid Films 213, 143 (1992).
http://dx.doi.org/10.1016/0040-6090(92)90489-X
20.
20. K. Naoto, E. Akinori, O. Kiyoshi, S. Ippei, S. Yuichi, and M. Shoji, J. Vac. Sci. Technol. A 19, 153 (2001).
21.
21. M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).
http://dx.doi.org/10.1002/jrs.v36:6/7
22.
22. T. Ishida, Y. Nakajima, J. Endo, D. Collard, and H. Fujita, Nanotechnology 20, 065705 (2009).
http://dx.doi.org/10.1088/0957-4484/20/6/065705
23.
23. H. H. Solak, C. Dais, and F. Clube, Opt. Express 19, 10686 (2011).
http://dx.doi.org/10.1364/OE.19.010686
24.
24. C. Lu and R. H. Lipson, Laser Photonics Rev. 4, 568 (2009).
http://dx.doi.org/10.1002/lpor.200810061
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/26/10.1063/1.3672045
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Scheme of the shadow evaporation process. The metal is evaporated iteratively from two sides of the surface.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Top view SEM and (b) cross sectional view of a cleaved chromium nanogap array compared with (c) ballistic simulation results. The 160 nm thick metal was evaporated at an angle of 55° from the surface normal. The resulting gap size is ∼10 nm. The underlying pattern consists of the HSQ photoresist with a periodicity of 250 nm, a thickness of 80 nm, and a gap size of 110 nm. Silicon was used as a substrate.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) and (c) Top view SEM and (b) cross sectional view of a cleaved gold nanogap array compared with ballistic simulation results. The 100 nm thick metal was evaporated at an angle of 60° from the surface normal. The resulting gap size is ∼13 nm. The underlying pattern consists of the HSQ photoresist with a periodicity of 250 nm, a thickness of 80 nm, and a gap size of ∼110 nm. Silicon was used as a substrate.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) SERS intensity for varying nanogap size. (b) SERS intensity as a function of the sample rotation for linearly polarized excitation. The sample consists of a nanogap array with a Au thickness of 100 nm. The excitation was at 633 nm and the SERS intensity corresponded to the 1008 cm−1 peak of a self assembled benzeneethanethiol monolayer. Error bars correspond to the standard deviation of 16 spatially separated SERS measurements and quantitative analysis of SEM images across the patterned area.

Loading

Article metrics loading...

/content/aip/journal/apl/99/26/10.1063/1.3672045
2011-12-27
2014-04-21

Abstract

We report a high-throughput method for the fabrication of metallic nanogap arrays with high-accuracy over large areas. This method, based on shadow evaporation and interference lithography, achieves sub-10 nm gap sizes with a high accuracy of ±1.5 nm. Controlled fabrication is demonstrated over mm2 areas and for periods of 250 nm. Experiments complemented with numerical simulations indicate that the formation of nanogaps is a robust, self-limiting process that can be applied to wafer-scale substrates. Surface-enhanced Raman scattering(SERS) experiments illustrate the potential for plasmonic sensing with an exceptionally low standard-deviation of the SERS signal below 3% and average enhancement factors exceeding 1 × 106.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/26/1.3672045.html;jsessionid=1qwv4hny5xc0o.x-aip-live-02?itemId=/content/aip/journal/apl/99/26/10.1063/1.3672045&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/26/10.1063/1.3672045
10.1063/1.3672045
SEARCH_EXPAND_ITEM