1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Long-lasting flexible organic solar cells stored and tested entirely in air
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/26/10.1063/1.3672222
1.
1. N. Anscombe, Nat. Photonics 4, 608 (2010).
http://dx.doi.org/10.1038/nphoton.2010.192
2.
2. G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010).
http://dx.doi.org/10.1002/adma.201001339
3.
3. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
4.
4. S. R. Cowan, A. Roy, and A. J. Heeger, Phys. Rev. B 82, 245207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245207
5.
5. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 253301 (2008).
http://dx.doi.org/10.1063/1.2945281
6.
6. D. Gao, M. G. Helander, Z.-B. Wang, D. P. Puzzo, M. T. Greiner, and Z.-H. Lu, Adv. Mater. 22, 5404 (2010).
http://dx.doi.org/10.1002/adma.201002738
7.
7. M. Girtan, and M. Rusu, Sol. Energy Mater. Sol. Cells 94, 446 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.10.026
8.
8. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
9.
9. F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 715 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.013
10.
10. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 253301 (2008).
http://dx.doi.org/10.1063/1.2945281
11.
11. M. Wang, Q. Tang, J. An, F. Xie, J. Chen, S. Zheng, K. Y. Wong, Q. Miao, and J. Xu, ACS Appl. Mater. Interfaces 2, 2699 (2010).
http://dx.doi.org/10.1021/am100541d
12.
12.See supplementary material at http://dx.doi.org/10.1063/1.3672222 for details on sample fabrication and supplementary results. [Supplementary Material]
13.
13. J. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, 2nd ed. (Wiley, New York, 2003).
14.
14. M. O. Reese, A. M. Nardes, B. L. Rupert, R. E. Larsen, D. C. Olson, M. T. Lloyd, S. E. Shaheen, D. S. Ginley, G. Rumbles, and N. Kopidakis, Adv. Funct. Mater. 20, 3476 (2010).
http://dx.doi.org/10.1002/adfm.201001079
15.
15. Z. Xu, L. M. Chen, G. W. Yang, C. H. Huang, J. H. Hou, Y. Wu, G. Li, C. S. Hsu, and Y. Yang, Adv. Funct. Mater. 19, 1227 (2009).
http://dx.doi.org/10.1002/adfm.200801286
16.
16. M. P. de Jong, L. J. van Ijzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).
http://dx.doi.org/10.1063/1.1315344
17.
17. P. Skraba, G. Bratina, S. Igarashi, H. Nohira, and K. Hirose, Thin Solid Films 519, 4216 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.02.034
18.
18. T. Ishida, H. Kobayashi, and Y. Nakato, J. Appl. Phys. 73, 4344 (1993).
http://dx.doi.org/10.1063/1.352818
19.
19. R. W. Hewitt and N. Winograd, J. Appl. Phys. 51, 2620 (1980).
http://dx.doi.org/10.1063/1.327991
20.
20. M. Manceau, J. Gaume, A. Rivaton, J.-L. Gardette, G. Monier, and L. Bideux, Thin Solid Films 518, 7113 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.06.042
21.
21. V. Yu. Aristov, O. V. Molodtsova, V. M. Zhilin, D. V. Vyalikh, and M. Knupfer, Phys. Rev. B 72, 165318 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165318
22.
22. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S. R. Forrest, Phys. Rev. B 55, 13748 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.13748
23.
23. Y. Hirose, A. Kahna, V. Aristov, and P. Soukiassian, Appl. Phys. Lett. 68, 217 (1996).
http://dx.doi.org/10.1063/1.116465
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/26/10.1063/1.3672222
Loading
/content/aip/journal/apl/99/26/10.1063/1.3672222
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/26/10.1063/1.3672222
2011-12-29
2014-07-14

Abstract

We report on improved stability of poly(3-hexylthiopene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells using an indiumtin oxide (ITO) anode and an indium metal cathode. Except for the ITO anode the devices are fabricated, stored, and tested entirely in air without encapsulation, exhibiting less than 10% loss in power conversion efficiency after 200 days. X-ray photoelectron spectroscopy shows that this improvement in ambient stability is correlated with the diffusion of indium from the cathode into the active polymer. The In oxidizes presumably resulting in a reduction in P3HT polymer chain degradation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/26/1.3672222.html;jsessionid=ap7lj8u2369sj.x-aip-live-06?itemId=/content/aip/journal/apl/99/26/10.1063/1.3672222&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Long-lasting flexible organic solar cells stored and tested entirely in air
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/26/10.1063/1.3672222
10.1063/1.3672222
SEARCH_EXPAND_ITEM