1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Doping of organic semiconductors induced by lithium fluoride/aluminum electrodes studied by electron spin resonance and infrared reflection-absorption spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/4/10.1063/1.3615799
1.
1. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
http://dx.doi.org/10.1063/1.118344
2.
2. G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Appl. Phys. Lett. 73, 1185 (1998).
http://dx.doi.org/10.1063/1.122367
3.
3. X. D. Feng, C. J. Huang, V. Lui, R. S. Khangura, and Z. H. Lu, Appl. Phys. Lett. 86, 143511 (2005).
http://dx.doi.org/10.1063/1.1899766
4.
4. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes, and F. Cacialli, Appl. Phys. Lett. 77, 3096 (2000).
http://dx.doi.org/10.1063/1.1323741
5.
5. Q.-T. Le, L. Yan, Y. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, J. Appl. Phys. 87, 375 (2000).
http://dx.doi.org/10.1063/1.371870
6.
6. J. Kido and T. Matsumoto, Appl. Phys. Lett. 73, 2866 (1998).
http://dx.doi.org/10.1063/1.122612
7.
7. M. A. Baldo and S. R. Forrest, Phys. Rev. B 64, 085201 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085201
8.
8. T. D. Pawlik, M. E. Kondakova, D. J. Giesen, J. C. Deaton, and D. Y. Kondakov, J. Soc. Inf. Disp. 17, 279 (2009).
http://dx.doi.org/10.1889/JSID17.3.279
9.
9. M. D. Pace, T. C. Christidis, J. J. Yin, and J. Milliken, J. Phys. Chem. 96, 6855 (1992).
http://dx.doi.org/10.1021/j100196a001
10.
10. M. Mermoux, Y. Chabre, and A. Rousseau, Carbon 29, 469 (1991).
http://dx.doi.org/10.1016/0008-6223(91)90216-6
11.
11. V. Dyakonov, G. Zoriniants, M. Scharber, C. J. Brabec, R. A. J. Janssen, J. C. Hummelen, and N. S. Sariciftci, Phys. Rev. B 59, 8019 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8019
12.
12. F. M. Mirabella, Modern Techniques in Applied Molecular Spectroscopy (Wiley, New York, 1998).
13.
13. M. Gottlieb, J. Opt. Soc. Am. 50, 343 (1960).
http://dx.doi.org/10.1364/JOSA.50.000343
14.
14. R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).
http://dx.doi.org/10.1103/PhysRev.59.673
15.
15. C. Kittel, Introduction to Solid State Physics, 3rd ed. (Wiley, New York, 1966).
16.
16. W. J. H. van Gennip, J. K. J. van Duren, P. C. Thüne, R. A. J. Janssen, and J. W. Niemantsverdriet, J. Chem. Phys. 117, 5031 (2002).
http://dx.doi.org/10.1063/1.1498473
17.
17. C. Alonso, A. Morato, F. Medina, F. Guirado, Y. Cesteros, P. Salagre, J. E. Sueriras, R. Terrado, and A. Giralt, Chem. Mater. 12, 1148 (2000).
http://dx.doi.org/10.1021/cm991195g
18.
18. G. Cardini, R. Bini, P. R. Salvi, V. Schettino, M. L. Klein, R. M. Strongin, L. Brard, and A. B. Smith, J. Phys. Chem. 98, 9966 (1994).
http://dx.doi.org/10.1021/j100091a006
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/4/10.1063/1.3615799
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Electron spin resonance (ESR) of Al|LiF|C60 (inverted deposition sequence) samples annealed at different temperatures. Only a signal for g = 2.001 is detected. (b) ESR signal of 35-nm C60 neat film, and with Al and LiF/Al electrodes deposited on top. Films with LiF demonstrate a strong signal with a g-value of 1.998, corresponding to C60-radical anion, while the remaining samples show a g = 2.001 signal.

Image of FIG. 2.

Click to view

FIG. 2.

IRRAS spectra of LiF, C60, and LiF/Al with different deposition orders. The spectra are offset for clarity. A 260-nm Al film serves as the bottom reflection element in all cases. Asterisks mark the four vibrational modes of C60.

Loading

Article metrics loading...

/content/aip/journal/apl/99/4/10.1063/1.3615799
2011-07-28
2014-04-17

Abstract

We report our investigations on the chemical doping mechanisms induced by LiF|Al electrodes evaporated onto fullerene thin films.Electron spin resonance(ESR) and infrared reflection-absorption spectroscopy (IRRAS) are utilized to characterize C60|Al and C60|LiF|Al interfaces. ESR spectra show that deposition of LiF followed by Al generates C60 radical anions and also the presence of an additional paramagnetic species of lower concentration that is present in all C60films regardless of LiF. IRRAS clarifies the mechanism occurring at the C60|LiF|Al interface, showing that interaction between LiF and C 60 followed by deposition of Al causes LiF clusters to chemically dissociate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/4/1.3615799.html;jsessionid=4oq60rreac7n8.x-aip-live-01?itemId=/content/aip/journal/apl/99/4/10.1063/1.3615799&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Doping of organic semiconductors induced by lithium fluoride/aluminum electrodes studied by electron spin resonance and infrared reflection-absorption spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/4/10.1063/1.3615799
10.1063/1.3615799
SEARCH_EXPAND_ITEM