1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/99/4/10.1063/1.3619816
1.
1. A. H. Castro Neto , et al.., Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
2.
2. T. J. Echtermeyer , et al.., IEEE Electron Device Lett. 29, 952 (2008).
http://dx.doi.org/10.1109/LED.2008.2001179
3.
3. B. Standley , et al.., Nano Lett. 8, 3345 (2008).
http://dx.doi.org/10.1021/nl801774a
4.
4. S. M. Kim , et al.., Appl. Phys. Lett. 99, 023103 (2011).
http://dx.doi.org/10.1063/1.3610571
5.
5. Y. Zheng , et al.., Appl. Phys. Lett. 94, 163505 (2009).
http://dx.doi.org/10.1063/1.3119215
6.
6. X. Hong , et al.., Appl. Phys. Lett. 97, 033114 (2010).
http://dx.doi.org/10.1063/1.3467450
7.
7. Y. Zheng , et al.., Phys. Rev. Lett. 105, 166602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.166602
8.
8. E. B. Song , et al.., Appl. Phys. Lett. 96, 081911 (2010).
http://dx.doi.org/10.1063/1.3323105
9.
9. I. Jeon , et al.., ACS Nano 5, 1915 (2011).
http://dx.doi.org/10.1021/nn102916c
10.
10. T.-K. Chung , et al.., Appl. Phys. Lett. 92, 112509 (2008).
http://dx.doi.org/10.1063/1.2900886
11.
11. F. Chen , et al.., Nano Lett. 9, 2571 (2009).
http://dx.doi.org/10.1021/nl900725u
12.
12. B. Huard , et al.., Phys. Rev. B 78, 121402 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.121402
13.
13. J. H. Chen , et al.., Nature Phys. 4, 377 (2008).
http://dx.doi.org/10.1038/nphys935
14.
14. G. Giovannetti , et al.., Phys. Rev. Lett. 101, 026803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026803
15.
15. S. K. Lee , et al.., J. Appl. Phys. 91, 9303 (2002).
http://dx.doi.org/10.1063/1.1467629
16.
16. J. S. Lee , et al.., J. Phys. Chem. C 111, 12504 (2007).
http://dx.doi.org/10.1021/jp074692q
17.
17. S. O. Chung , et al.., Mater. Chem. Phys. 53, 60 (1998).
http://dx.doi.org/10.1016/S0254-0584(97)02063-4
18.
18. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed. (Wiley, New York, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/4/10.1063/1.3619816
Loading
/content/aip/journal/apl/99/4/10.1063/1.3619816
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/4/10.1063/1.3619816
2011-07-29
2015-03-03

Abstract

With the motivation of realizing an all graphene-based circuit for low power, we present a reliable nonvolatile graphenememory device, single-layer graphene (SLG) ferroelectric field-effect transistor (FFET). We demonstrate that exfoliated single-layer graphene can be optically visible on a ferroelectric lead-zirconate-titanate (PZT) substrate and observe a large memory window that is nearly equivalent to the hysteresis of the PZT at low operating voltages in a graphene FFET. In comparison to exfoliated graphene, FFETs fabricated with chemical vapor deposited (CVD) graphene exhibit enhanced stability through a bi-stable current state operation with long retention time. In addition, we suggest that the trapping/de-trapping of charge carriers in the interface states is responsible for the anti-hysteresis behavior in graphene FFET on PZT.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/4/1.3619816.html;jsessionid=1j8zqrefj16t9.x-aip-live-02?itemId=/content/aip/journal/apl/99/4/10.1063/1.3619816&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Robust bi-stable memory operation in single-layer graphene ferroelectric memory
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/4/10.1063/1.3619816
10.1063/1.3619816
SEARCH_EXPAND_ITEM