1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Effect of light scattering on the transmission spectra of organic nanocrystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/5/10.1063/1.3623434
1.
1. Single Organic Nanoparticles, edited by H. Masuhara, H. Nakanishi and K. Sasaki (Springer, Berlin, 2003).
2.
2. S. Masuo, A. Masuhara, T. Akashi, M. Muranushi, S. Machida, H. Kasai, H. Nakanishi, H. Oikawa, and A. Itaya, Jpn. J. Appl. Phys. 46, L268 (2007).
http://dx.doi.org/10.1143/JJAP.46.L268
3.
3. J. Tanaka, Bull. Chem. Soc. Jpn. 36, 1237 (1963).
http://dx.doi.org/10.1246/bcsj.36.1237
4.
4. R. M. Hochstrasser, J. Chem. Phys. 40, 2559 (1964).
http://dx.doi.org/10.1063/1.1725563
5.
5. J. Tanaka, T. Kishi, and M. Tanaka, Bull. Chem. Soc. Jpn. 47, 2376 (1974).
http://dx.doi.org/10.1246/bcsj.47.2376
6.
6. K. Fuke, K. Kaya, T. Kajiwara, and S. Nagakura, J. Mol. Spectrosc. 63, 98 (1976).
http://dx.doi.org/10.1016/0022-2852(67)90137-3
7.
7. A. Matsui, K. Mizuno, and M. Iemura, J. Phys. Soc. Jpn. 51, 1871 (1982).
http://dx.doi.org/10.1143/JPSJ.51.1871
8.
8. H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, Jpn. J. Appl. Phys. 35, L221 (1996).
http://dx.doi.org/10.1143/JJAP.35.L221
9.
9. J.-A. He, K. Yang, J. Kumar, S. K. Tripathy, L. A. Samuelson, T. Oshikiri, H. Katagi, H. Kasai, S. Okada, H. Oikawa, and H. Nakanashi, J. Phys. Chem. B 103, 11050 (1999).
http://dx.doi.org/10.1021/jp992633+
10.
10. H. Kasai, H. Oikawa, S. Okada, and H. Nakanishi, Bull. Chem. Soc. Jpn. 71, 2597 (1998).
http://dx.doi.org/10.1246/bcsj.71.2597
11.
11. E. T. Batteh, J. Cheng, G. Chen, D. G. Steel, D. Gammon, D. S. Katzer, and D. Park, Phys. Rev. B 71, 15532 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.155327
12.
12. A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, and M. S. Ünlü, Nano Lett. 7, 2892 (2007).
http://dx.doi.org/10.1021/nl0717255
13.
13. H. Ishino, S. Iwai, S. Iwamoto, T. Okumura, T. Kobayashi, and E. Tokunaga, Opt. Rev. 17, 337 (2010).
http://dx.doi.org/10.1007/s10043-010-0061-0
14.
14. H. Ishino, S. Iwai, S. Iwamoto, T. Okumura, T. Nishimoto, S. V. Nair, T. Kobayashi, and E. Tokunaga, Phys. Rev. B 84, 041303R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.041303
15.
15. F. J. García de Abajo, Rev. Mod. Phys. 79, 1267 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.1267
16.
16. A. Petukhova, A. S. Paton, Z. Wei, I. Gourevich, S. V. Nair, H. E. Ruda, A. Shik, and E. Kumacheva, Adv. Funct. Mater. 18, 1961 (2008).
http://dx.doi.org/10.1002/adfm.200701441
17.
17.As the nanocrystals are not spherical, the average diameter is calculated as that of an equal volume sphere.
18.
18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
19.
19. E. M. Purcell and C. Pennypacker, Astrophys. J. 186, 705 (1973).
http://dx.doi.org/10.1086/152538
20.
20. C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1978), Vol. 2, p. 433.
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/5/10.1063/1.3623434
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM images of nanocrystals. The samples were prepared starting from an aqueous suspension of nanocrystals that was cast and dried on a slideglass.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Extinction and absorption spectra for water suspensions of perylene nanocrystals of 74 nm, 144 nm, 193 nm, and 318 nm in average diameter.17 The peak positions are designated by the arrows. The dashed line at 468 nm is the free exciton energy of bulk crystal at 312 K.

Image of FIG. 3.

Click to view

FIG. 3.

Calculated absorption efficiency (Q abs) and extinction efficiency (Q ext) of randomly oriented spherical nanocrystals of diameter D = 20, 100, and 300 nm. The absorption and extinction are virtually identical for D = 20 nm.

Tables

Generic image for table

Click to view

Table I.

The dipole sum tensors for perylene crystal in the molecular co-ordinates. and appearing in Eq. (1) correspond to symmetries Au and Bu , respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/99/5/10.1063/1.3623434
2011-08-03
2014-04-24

Abstract

The effect of light scattering on the extinctionspectra of organic nanocrystals was investigated by absorption and extinction measurement and by theoretical calculation for typical organic nanocrystals of α-perylene. In the extinctionspectra, the exciton band shows a size-dependent redshift and tail toward longer wavelengths due to scattering as the crystal size is increased beyond ∼50 nm. In the absorption spectra, the exciton band blueshifts from that in the bulk crystal for crystal sizes less than ∼200 nm due to the anisotropic exciton structure in perylene. The calculation qualitatively supports these results. The effect of scattering always makes the extinction band redshift from the absorption band.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/5/1.3623434.html;jsessionid=2a4sr0dnl0m5k.x-aip-live-06?itemId=/content/aip/journal/apl/99/5/10.1063/1.3623434&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of light scattering on the transmission spectra of organic nanocrystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/5/10.1063/1.3623434
10.1063/1.3623434
SEARCH_EXPAND_ITEM