1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Air stable hybrid inverted tandem solar cell design
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/6/10.1063/1.3622119
1.
1. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
2.
2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
3.
3. J. M. Nunzi, C. R. Acad. Sci. 3, 523 (2002).
4.
4. M. Hiramoto, M. Suezaki, and M. Yokoyama, Chem. Lett. 19, 327 (1990).
http://dx.doi.org/10.1246/cl.1990.327
5.
5. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
6.
6. G. Dennler, H. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, Appl. Phys. Lett. 89, 073502 (2006).
http://dx.doi.org/10.1063/1.2336593
7.
7. A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, Appl. Phys. Lett. 89, 203506 (2006).
http://dx.doi.org/10.1063/1.2388938
8.
8. J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, Appl. Phys. Lett. 86, 244102 (2005).
http://dx.doi.org/10.1063/1.1935771
9.
9. Y. Sahin, S. Alem, R. D. Bettignies, and J. M. Nunzi, Thin Solid Films 476, 340 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.10.018
10.
10. N. Sekine, C. H. Chou, W. L. Kwan, and Y. Yang, Org. Electron. 10, 1473 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.08.011
11.
11. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Appl. Phys. Lett. 91, 152111 (2007).
http://dx.doi.org/10.1063/1.2799257
12.
12. X. W. Sun, D. W. Zhao, L. Ke, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 97, 053303 (2010).
http://dx.doi.org/10.1063/1.3469928
13.
13. S. K. Hau, H. L. Yip, K. S. Chen, J. Zou, and A. K. Y. Jen, Appl. Phys. Lett. 97, 253307 (2010).
http://dx.doi.org/10.1063/1.3530431
14.
14. A. Hadipour, B. de Boer, and P. W. M. Blom, Org. Electron. 9, 617 (2008)
http://dx.doi.org/10.1016/j.orgel.2008.03.009
14. J. Gilot, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 22, E67 (2010).
http://dx.doi.org/10.1002/adma.200902398
15.
15. D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 93, 083305 (2008)
http://dx.doi.org/10.1063/1.2976126
15. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
http://dx.doi.org/10.1063/1.2174093
16.
16. A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, and K. Leo, Appl. Phys. Lett. 82, 4495 (2003).
http://dx.doi.org/10.1063/1.1583872
17.
17. A. K. Pandey, J. M. Nunzi, H. Wang, C. C. Oey, A. B. Djurišić, M. H. Xie, Y. H. Leung, K. K. Y. Man, and W. K. Chan, Org. Electron. 8, 396 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.02.003
18.
18. F. J. Zhang, D. W. Zhao, Z. L. Zhou, H. Wang, Z. Xu, and Y. S. Wang, Sol. Energy Mater. Sol. Cells 94, 2416 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.08.031
19.
19. A. Braun, N. Szabó, K. Schwarzburg, T. Hannappel, E. A. Katz, and J. M. Gordon, Appl. Phys. Lett. 98, 223506 (2011).
http://dx.doi.org/10.1063/1.3596444
20.
20. M. Hu, J. Chen, Z. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Chem. Soc. Rev. 35, 1084 (2006).
http://dx.doi.org/10.1039/b517615h
21.
21. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, Appl. Phys. Lett. 94, 223307 (2009).
http://dx.doi.org/10.1063/1.3148664
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/6/10.1063/1.3622119
Loading
/content/aip/journal/apl/99/6/10.1063/1.3622119
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/99/6/10.1063/1.3622119
2011-08-08
2014-10-21

Abstract

In order to get an air stable solar cell with high open circuit voltage (Voc), we fabricated an inverted tandem solar cell based on hybrid wet chemistry and vacuum thermal deposition techniques. A thin metallic interfacial layer was applied to improve charge recombination and maximize both the fill factor and Voc of the tandem solar cell. A cationic dye doped electron transport layer was used to minimize space charge induced Voc loss. The tandem cell Voc reached 1.02 V, which equals the sum of the two subcells’ Voc. Increase of the metal nanoparticles’ layer thickness reduces the short circuit current density of the tandem owing to increasing light extinction. Our tandem cell design offers superior air stability due to additional encapsulation effect from top metal oxide layers. It retains about 80% of its original efficiency after storage in air for three months.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/6/1.3622119.html;jsessionid=edqn0plqfb5rd.x-aip-live-02?itemId=/content/aip/journal/apl/99/6/10.1063/1.3622119&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Air stable hybrid inverted tandem solar cell design
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/6/10.1063/1.3622119
10.1063/1.3622119
SEARCH_EXPAND_ITEM