1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhanced emission and light control with tapered plasmonic nanoantennas
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/8/10.1063/1.3629787
1.
1. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
http://dx.doi.org/10.1364/AOP.1.000438
2.
2. L. Novotny and N. F. van Hulst, Nature Photon. 5, 83 (2011).
http://dx.doi.org/10.1038/nphoton.2010.237
3.
3. A. Huck, S. Kumar, A. Shakoor, and U. K. Andersen, Phys. Rev. Lett. 106, 096801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.096801
4.
4. I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, Phys. Rev. Lett. 105, 180502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.180502
5.
5. T. Shegai, V. D. Miljkoviĉ, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, Nano. Lett. 11, 706 (2011).
http://dx.doi.org/10.1021/nl103834y
6.
6. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Science 329, 930 (2010).
http://dx.doi.org/10.1126/science.1191922
7.
7. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, Opt. Express 6, 16858 (2008).
http://dx.doi.org/10.1364/OE.16.010858
8.
8. T. Kosako, Y. Kadoya, and H. F. Hofmann, Nature. Photon. 4, 312 (2010).
http://dx.doi.org/10.1038/nphoton.2010.34
9.
9. H. F. Hofmann, T. Kosako, and Y. Kadoya, New J. Phys. 9, 217 (2007).
http://dx.doi.org/10.1088/1367-2630/9/7/217
10.
10. A. F. Koenderink, Nano Lett. 9, 4228 (2009).
http://dx.doi.org/10.1021/nl902439n
11.
11. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley and Sons, New Jersey, 2005).
12.
12. T. A. Milligan, Modern Antenna Design (John Wiley and Sons, New Jersey, 2005).
13.
13. D. L. Sengupta, IRE Trans. Antennas Propag. 8, 11 (1960).
http://dx.doi.org/10.1109/TAP.1960.1144817
14.
14. K. V. Nerkaryan, Phys. Lett. A 237, 103 (1997).
http://dx.doi.org/10.1016/S0375-9601(97)00722-6
15.
15. M. I. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.137404
16.
16. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, Phys. Rev. Lett. 105, 116804 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.116804
17.
17. A. R. Davoyan, I. V. Shadrirov, Yu. S. Kivshar, and D. K. Gramotnev, Phys. Status Solidi (RRL) 4, 277 (2010).
http://dx.doi.org/10.1002/pssr.201004220
18.
18. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.266802
19.
19. D. E. Chang, A. O. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. 97, 053002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.053002
20.
20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/8/10.1063/1.3629787
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Five-element plasmonic Yagi-Uda nanoantenna. (b) Tapered plasmonic Yagi-Uda nanoantenna. The arrow denotes the position and the polarization of the emitter.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Angular emission patterns of the 5-element and 42-element Yagi-Uda nanoantennas. (b) and (c) Real part of Ex electric fields of the 5-element and 42-element Yagi-Uda nanoantennas.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Maximum emission directivity Dmax and (b) beamwidth of the tapered 42-element Yagi-Uda nanoantenna as a function of α. The straight lines highlight αopt  = 6.6°. (c) Dmax at αopt  = 6.6° as a function of the spacing w.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) Angular emission patterns of 42-element Yagi-Uda nanoantennas without tapering (α = 0), with the optimal tapering (αopt  = 6.6°), and with a non-optimized tapering (α = 12.2°). (b) and (c) Real part of Ex electric fields of the antenna with αopt  = 6.6° and α = 12.2°. The same scale as in Figs. 2(b) and 2(c) is used.

Loading

Article metrics loading...

/content/aip/journal/apl/99/8/10.1063/1.3629787
2011-08-23
2014-04-23

Abstract

We introduce a design of Yagi-Uda plasmonic nanoantennas for enhancing the directive gain and achieving control over the angular emission of light. We demonstrate that tapering of nanoantenna elements allows to decrease the inter-element spacing tenfold also enhancing the emission directivity. We find the optimal tapering angle that provides the maximum directivity enhancement and the minimum end-fire beamwidth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/8/1.3629787.html;jsessionid=cemotgt19q0m4.x-aip-live-02?itemId=/content/aip/journal/apl/99/8/10.1063/1.3629787&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced emission and light control with tapered plasmonic nanoantennas
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/8/10.1063/1.3629787
10.1063/1.3629787
SEARCH_EXPAND_ITEM