1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Highly stable Al-doped ZnO transparent conductors using an oxidized ultrathin metal capping layer at its percolation thickness
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/9/10.1063/1.3631674
1.
1. A. Chipman, Nature (London) 449, 131 (2007).
http://dx.doi.org/10.1038/449131a
2.
2. A. R. Schlatmann, D. W. Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M. Klapwijk, and G. Hadziioannou, Appl. Phys. Lett. 69, 1764 (1996).
http://dx.doi.org/10.1063/1.117478
3.
3. C.M. Maghanga, G. A. Niklasson, and C. G. Granqvist, Thin Solid Films 518, 1254 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.06.064
4.
4. T. L. Chen, Y. Furubayashi, Y. Hirose, T. Hitosugi, T. Shimada, and T. Hasegawa, J. Phys. D: Appl. Phys. 40, 5961 (2007).
http://dx.doi.org/10.1088/0022-3727/40/19/026
5.
5. T. Minami, Thin Solid Films 516, 5822 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.10.063
6.
6. G. Murdoch, S. Hinds, E. Sargent, S. Tsang, L. Mordoukhovski, and Z. Lu, Appl. Phys. Lett. 94, 213301 (2009).
http://dx.doi.org/10.1063/1.3142423
7.
7. T. Miyata, Y. Ohtani, T. Kuboi, and T. Minami, Thin Solid Films 516, 1354 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.03.084
8.
8. F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hüpkes, D. Hrunski, and B. Rech, J. Appl. Phys. 107, 013708 (2010).
http://dx.doi.org/10.1063/1.3269721
9.
9. D. Greiner, N. Papathanasiou, A. Pflug, F. Ruske, and R. Klenk, Thin Solid Films 517, 2291 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.10.107
10.
10. W. Lin, R. Ma, J. Xue, and B. Kang, Sol. Energy Mater. Sol. Cells 91, 1902 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.07.008
11.
11. F. J. Pern, S. H. Glick, X. Li, C. DeHart, T. Gennett, M. Contreras, and T. Gessert, Proc. SPIE 7412, 74120K (2009).
http://dx.doi.org/10.1117/12.826559
12.
12. D. S. Ghosh, L. Martinez, S. Giurgulo, P. Vergani, and V. Pruneri, Opt. Lett. 34, 325 (2009).
http://dx.doi.org/10.1364/OL.34.000325
13.
13. D. S. Ghosh, R. Betancur, T. L. Chen, V. Pruneri, and J. Martorell, Sol. Energy Mater. Sol. Cells 95, 1228 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.12.040
14.
14. D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, Nanotechnology 20, 275204 (2009).
http://dx.doi.org/10.1088/0957-4484/20/27/275204
15.
15. J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, Appl. Phys. Lett. 92, 083304 (2008).
http://dx.doi.org/10.1063/1.2888176
16.
16. D. S. Ghosh, T. L. Chen, and V. Pruneri, Appl. Phys. Lett. 96, 091106 (2010).
http://dx.doi.org/10.1063/1.3341201
17.
17. E. H. Sondheimer, Adv. Phys. 1, 1 (1952).
http://dx.doi.org/10.1080/00018735200101151
18.
18. I. M. Chan, T. Y. Hsu, and F. C. Hong, Appl. Phys. Lett. 81, 1899 (2002).
http://dx.doi.org/10.1063/1.1505112
19.
19. S. Cheylan, D. S. Ghosh, D. Krautz, T. L. Chen, and V. Pruneri, Org. Electron. 12, 818 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.02.015
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/9/10.1063/1.3631674
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Rsδ3 versus δ for the determination of percolation threshold and (b) experimental data for Ni layers fitted with F-S model, inset in (a) is the average transmittance for Ni thin films with varied thickness.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Correlation of electrical properties of AZOL (solid square) and AZOL/NiP (open square) films with DH test time, inset is the average transmittance change with DH test time.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Typical optical micro-image for AZOL and AZOL/NiP samples before DH test and (b) for AZOL after a 30-day DH test, (c) and (d) are the AFM images (scanning area of 10 × 10 μm2) for AZOL/NiP and AZOL after the DH test, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) Polar figure for the thermal stability of the samples, the horizontal axis (θ = 0) corresponds to ideal stability and (b) sheet resistance changes with DH test time (red column: 24 h and green column: one week) for different samples.

Image of FIG. 5.

Click to view

FIG. 5.

(Color online) Luminance versus voltage curves of SY-based OLEDs with the different anodes, inset is the corresponding luminance efficiency curves.

Loading

Article metrics loading...

/content/aip/journal/apl/99/9/10.1063/1.3631674
2011-08-30
2014-04-20

Abstract

Metal capping layer can be used to enhance the physical properties of thin films. We propose a transparent conductor structure made of Al-doped ZnO (AZO) and an oxidized Ni capping layer, the latter with a thickness in proximity of its percolation threshold (2.5 nm). The capping layer inhibits the penetration of oxygen and water into the AZO’s grain boundaries thus significantly increasing the stability of the combined structure, as it is shown by its resistance in damp heat testing at 95 °C and 95% humidity. In addition, the oxidized Ni capping layer increases the performance of AZO transparent anodes in organic light emitting diodes by producing efficiencies as high as those of indium-tin-oxide based devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/9/1.3631674.html;jsessionid=2bk9b6d5179e2.x-aip-live-02?itemId=/content/aip/journal/apl/99/9/10.1063/1.3631674&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly stable Al-doped ZnO transparent conductors using an oxidized ultrathin metal capping layer at its percolation thickness
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/9/10.1063/1.3631674
10.1063/1.3631674
SEARCH_EXPAND_ITEM