1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Realization of a narrowband single wavelength microring mirror
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/99/9/10.1063/1.3633111
1.
1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, J. Lightwave Technol. 15, 998 (1997).
http://dx.doi.org/10.1109/50.588673
2.
2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
http://dx.doi.org/10.1038/nature02921
3.
3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
http://dx.doi.org/10.1038/nature03569
4.
4. T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1422 (2003).
http://dx.doi.org/10.1109/LPT.2003.818049
5.
5. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).
http://dx.doi.org/10.1038/nature03045
6.
6. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, J. Opt. Soc. Am. B 21, 1665 (2004).
http://dx.doi.org/10.1364/JOSAB.21.001665
7.
7. C.-Y. Chao and L. J. Guo, App. Phys. Lett. 83, 1527 (2003).
http://dx.doi.org/10.1063/1.1605261
8.
8. Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, Appl. Phys. Lett. 72, 141 (1998).
http://dx.doi.org/10.1063/1.120668
9.
9. J. K. S. Poon, J. Scheuer, and A. Yariv, IEEE Photon. Technol. Lett. 16, 1331 (2004).
http://dx.doi.org/10.1109/LPT.2004.826152
10.
10. Y. Chung, D.-G. Kim, and N. Dagli, J. Lightwave Technol. 24, 1865 (2006).
http://dx.doi.org/10.1109/JLT.2006.871021
11.
11. V. Van, J. Lightwave Technol. 25, 3142 (2007).
http://dx.doi.org/10.1109/JLT.2007.904418
12.
12. J. Scheuer, G. T. Paloczi, and A. Yariv, App. Phys. Lett. 87, 251102 (2005).
http://dx.doi.org/10.1063/1.2149158
13.
13. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
http://dx.doi.org/10.1364/OL.27.001669
14.
14. F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, App. Phys. Lett. 96, 081112 (2010).
http://dx.doi.org/10.1063/1.3330894
15.
15. T. Wang, Z. Zhang, F. Liu, Y. Tong, J. Wang, Y. Tian, M. Qiu, and Y. Su, Opt. Commun. 282, 3464 (2009).
http://dx.doi.org/10.1016/j.optcom.2009.05.071
16.
16. Y. M. Kang, A. Arbabi, and L. L. Goddard, Opt. Express 18, 16813 (2010).
http://dx.doi.org/10.1364/OE.18.016813
17.
17. Y. M. Kang, A. Arbabi, and L. L. Goddard, Opt. Quantum Electron. 41, 689 (2010).
http://dx.doi.org/10.1007/s11082-010-9380-4
18.
18. A. Arbabi, Y. M. Kang, and L. L. Goddard, IEEE J. Quantum Electron. 46, 1769 (2010).
http://dx.doi.org/10.1109/JQE.2010.2068039
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/9/10.1063/1.3633111
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of the ring with integrated DBR. The DBR is realized by modulating the top half of the ring waveguide. (b) SEM image of the fabricated device prior to top cladding deposition. (c) Zoomed-in view of the portion of the image inside the rectangle shown in (b). (d) Angled view of the modulated ring waveguide.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Measured reflection and transmission spectra of a reflective ring resonator. (b) Expanded view of the measured spectra in (a) around the main reflection peak. The dashed lines show the simulated spectra of a fitted model.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Extracted reflection and transmission spectra of the reflective ring resonator after removing the fiber coupling losses and waveguide facet reflections. Corresponding spectra of a 4.3 mm long conventional DBR with the same peak reflectivity and FWHM are also shown for comparison.

Loading

Article metrics loading...

/content/aip/journal/apl/99/9/10.1063/1.3633111
2011-08-30
2014-04-19

Abstract

We present a small footprint narrowband on-chip mirror made by integration of a distributed Bragg reflector (DBR) inside a microring resonator. The DBR covers half of the ring’s circumference and is only reflective at one of the ring resonances. Design, fabrication, and characterization of the proposed device are presented. A single reflection peak with maximum power reflectivity of 92.3% and full width at half maximum of 0.4 nm is demonstrated. The device has potential application as an in-line mirror for low-threshold, narrow linewidth single mode laser diodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/99/9/1.3633111.html;jsessionid=1tlnr37o96si5.x-aip-live-02?itemId=/content/aip/journal/apl/99/9/10.1063/1.3633111&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Realization of a narrowband single wavelength microring mirror
http://aip.metastore.ingenta.com/content/aip/journal/apl/99/9/10.1063/1.3633111
10.1063/1.3633111
SEARCH_EXPAND_ITEM