1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Transparent, flexible, and solid-state supercapacitors based on graphene electrodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/1/10.1063/1.4808242
1.
1. S. Ju, J. Li, J. Liu, P. C. Chen, Y. G. Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, Nano Lett. 8, 997 (2008).
http://dx.doi.org/10.1021/nl072538+
2.
2. S. Ju, A. Facchetti, X. Xuan, J. Liu, F. Ishikawa, P. D. Ye, C. Zhou, T. J. Marks, and D. B. Janes, Nat. Nanotechnol. 2, 378 (2007).
http://dx.doi.org/10.1038/nnano.2007.151
3.
3. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett. 9, 1872 (2009).
http://dx.doi.org/10.1021/nl8038579
4.
4. D. Wei, S. J. Wakeham, T. W. Ng, M. J. Thwaites, H. Brown, and P. Beecher, Electrochem. Commun. 11, 2285 (2009).
http://dx.doi.org/10.1016/j.elecom.2009.10.011
5.
5. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).
http://dx.doi.org/10.1039/b813846j
6.
6. K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Y. Lim, and H. Lee, Adv. Mater. 13, 497 (2001).
http://dx.doi.org/10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
7.
7. A. Izadi-Najafabadi, T. Yamada, D. N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, and K. Hata, ACS Nano 5, 811 (2011).
http://dx.doi.org/10.1021/nn1017457
8.
8. Y. Hu, H. Zhu, J. Wang, and Z. Chen, J. Alloys Compd. 509, 10234 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.08.080
9.
9. G. R. Li, Z. P. Feng, Y. N. Ou, D. Wu, R. W. Fu, and Y. X. Tong, Langmuir 26, 2209 (2010).
http://dx.doi.org/10.1021/la903947c
10.
10. A. Burke, J. Power Sources 91, 37 (2000).
http://dx.doi.org/10.1016/S0378-7753(00)00485-7
11.
11. U. Fischer, R. Saliger, V. Bock, R. Petricevic, and J. Fricke, J. Porous Mater. 4, 281 (1997).
http://dx.doi.org/10.1023/A:1009629423578
12.
12. S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, and I. Mochida, Carbon 42, 1723 (2004).
http://dx.doi.org/10.1016/j.carbon.2004.03.006
13.
13. R. Ryoo, S. H. Joo, and S. Jun, J. Phys. Chem. B 103, 7743 (1999).
http://dx.doi.org/10.1021/jp991673a
14.
14. J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, and P. M. Ajayan, Nano Lett. 11, 1423 (2011).
http://dx.doi.org/10.1021/nl200225j
15.
15. A. Yu, I. Roes, A. Davies, and Z. Chen, Appl. Phys. Lett. 96, 253105 (2010).
http://dx.doi.org/10.1063/1.3455879
16.
16. M. He, J. Jung, F. Qiu, and Z. Lin, J. Mater. Chem. 22, 24254 (2012).
http://dx.doi.org/10.1039/c2jm33784c
17.
17. T. H. Seo, J. P. Shim, S. J. Chae, G. Shin, B. K. Kim, D. S. Lee, Y. H. Lee, and E. K. Suh, Appl. Phys. Lett. 102, 031116 (2013).
http://dx.doi.org/10.1063/1.4789502
18.
18. J. Y. Lin, C. Y. Chan, and S. W. Chou, Chem. Commun. (Cambridge) 49, 1440 (2013).
http://dx.doi.org/10.1039/c2cc38658e
19.
19. J. Wang, X. Xin, and Z. Lin, Nanoscale 3, 3040 (2011).
http://dx.doi.org/10.1039/C1NR10425J
20.
20. J. H. Lee, K. Y. Lee, B. Kumar, N. T. Tien, N. E. Lee, and S. W. Kim, Energy Environ. Sci. 6, 169 (2013).
http://dx.doi.org/10.1039/c2ee23530g
21.
21. W. Xiong, Y. S. Zhou, L. J. Jiang, S. Amitabha, M. S. Masoud, Z. Q. Xie, Y. Gao, N. J. Ianno, L. Jiang, and Y. F. Lu, Adv. Mater. 25, 630 (2013).
http://dx.doi.org/10.1002/adma.201202840
22.
22. A. Davies, P. Audette, B. Farrow, F. Hassan, Z. Chen, J. Y. Choi, and A. Yu, J. Phys. Chem. C 115, 17612 (2011).
http://dx.doi.org/10.1021/jp205568v
23.
23. T. Yu, Z. Ni, C. Du, Y. You, Y. Wang, and Z. Shen, J. Phys. Chem. C 112, 12602 (2008).
http://dx.doi.org/10.1021/jp806045u
24.
24. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
http://dx.doi.org/10.1021/nl902623y
25.
25. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
26.
26. G. Tsoukleri, J. Parthenios, K. Papagelis, I. Riaz, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, Small 5, 2397 (2009).
http://dx.doi.org/10.1002/smll.200900802
27.
27. A. Frank, G. Tsoukleri, J. Parthenios, K. Papagelis, I. Riaz, R. Jalil, K. S. Novoselov, and C. Galiotis, ACS Nano 4, 3131 (2010).
http://dx.doi.org/10.1021/nn100454w
28.
28. Z. Xu, Z. Li, C. M. B. Holt, X. Tan, H. Wang, B. S. Amirkhiz, T. Stephenson, and D. Mitlin, J. Phys. Chem. Lett. 3, 2928 (2012).
http://dx.doi.org/10.1021/jz301207g
29.
29. D. Sun, X. Yan, J. Lang, and Q. Xue, J. Power Sources 222, 52 (2013).
http://dx.doi.org/10.1016/j.jpowsour.2012.08.059
30.
30. X. Yang, J. Zhu, L. Qiu, and D. Li, Adv. Mater. 23, 2833 (2011).
http://dx.doi.org/10.1002/adma.201100261
31.
31. L. T. Le, M. H. Ervin, H. Qiu, B. E. Fuchs, and W. Y. Lee, Electrochem. Commun. 13, 355 (2011).
http://dx.doi.org/10.1016/j.elecom.2011.01.023
32.
32. P. C. Chen, G. Shen, S. Sukcharoenchoke, and C. Zhou, Appl. Phys. Lett. 94, 043113 (2009).
http://dx.doi.org/10.1063/1.3069277
33.
33. Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 108, 1301313018 (2011).
http://dx.doi.org/10.1073/pnas.1102873108
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4808242
Loading
/content/aip/journal/aplmater/1/1/10.1063/1.4808242
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/1/10.1063/1.4808242
2013-06-07
2014-10-21

Abstract

In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol)/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ∼67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/1/1.4808242.html;jsessionid=4fuvr50m6ueff.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/1/10.1063/1.4808242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transparent, flexible, and solid-state supercapacitors based on graphene electrodes
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4808242
10.1063/1.4808242
SEARCH_EXPAND_ITEM