Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Ju, J. Li, J. Liu, P. C. Chen, Y. G. Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, Nano Lett. 8, 997 (2008).
2. S. Ju, A. Facchetti, X. Xuan, J. Liu, F. Ishikawa, P. D. Ye, C. Zhou, T. J. Marks, and D. B. Janes, Nat. Nanotechnol. 2, 378 (2007).
3. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett. 9, 1872 (2009).
4. D. Wei, S. J. Wakeham, T. W. Ng, M. J. Thwaites, H. Brown, and P. Beecher, Electrochem. Commun. 11, 2285 (2009).
5. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).
6. K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Y. Lim, and H. Lee, Adv. Mater. 13, 497 (2001).<497::AID-ADMA497>3.0.CO;2-H
7. A. Izadi-Najafabadi, T. Yamada, D. N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, and K. Hata, ACS Nano 5, 811 (2011).
8. Y. Hu, H. Zhu, J. Wang, and Z. Chen, J. Alloys Compd. 509, 10234 (2011).
9. G. R. Li, Z. P. Feng, Y. N. Ou, D. Wu, R. W. Fu, and Y. X. Tong, Langmuir 26, 2209 (2010).
10. A. Burke, J. Power Sources 91, 37 (2000).
11. U. Fischer, R. Saliger, V. Bock, R. Petricevic, and J. Fricke, J. Porous Mater. 4, 281 (1997).
12. S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, and I. Mochida, Carbon 42, 1723 (2004).
13. R. Ryoo, S. H. Joo, and S. Jun, J. Phys. Chem. B 103, 7743 (1999).
14. J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, and P. M. Ajayan, Nano Lett. 11, 1423 (2011).
15. A. Yu, I. Roes, A. Davies, and Z. Chen, Appl. Phys. Lett. 96, 253105 (2010).
16. M. He, J. Jung, F. Qiu, and Z. Lin, J. Mater. Chem. 22, 24254 (2012).
17. T. H. Seo, J. P. Shim, S. J. Chae, G. Shin, B. K. Kim, D. S. Lee, Y. H. Lee, and E. K. Suh, Appl. Phys. Lett. 102, 031116 (2013).
18. J. Y. Lin, C. Y. Chan, and S. W. Chou, Chem. Commun. (Cambridge) 49, 1440 (2013).
19. J. Wang, X. Xin, and Z. Lin, Nanoscale 3, 3040 (2011).
20. J. H. Lee, K. Y. Lee, B. Kumar, N. T. Tien, N. E. Lee, and S. W. Kim, Energy Environ. Sci. 6, 169 (2013).
21. W. Xiong, Y. S. Zhou, L. J. Jiang, S. Amitabha, M. S. Masoud, Z. Q. Xie, Y. Gao, N. J. Ianno, L. Jiang, and Y. F. Lu, Adv. Mater. 25, 630 (2013).
22. A. Davies, P. Audette, B. Farrow, F. Hassan, Z. Chen, J. Y. Choi, and A. Yu, J. Phys. Chem. C 115, 17612 (2011).
23. T. Yu, Z. Ni, C. Du, Y. You, Y. Wang, and Z. Shen, J. Phys. Chem. C 112, 12602 (2008).
24. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
25. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
26. G. Tsoukleri, J. Parthenios, K. Papagelis, I. Riaz, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, Small 5, 2397 (2009).
27. A. Frank, G. Tsoukleri, J. Parthenios, K. Papagelis, I. Riaz, R. Jalil, K. S. Novoselov, and C. Galiotis, ACS Nano 4, 3131 (2010).
28. Z. Xu, Z. Li, C. M. B. Holt, X. Tan, H. Wang, B. S. Amirkhiz, T. Stephenson, and D. Mitlin, J. Phys. Chem. Lett. 3, 2928 (2012).
29. D. Sun, X. Yan, J. Lang, and Q. Xue, J. Power Sources 222, 52 (2013).
30. X. Yang, J. Zhu, L. Qiu, and D. Li, Adv. Mater. 23, 2833 (2011).
31. L. T. Le, M. H. Ervin, H. Qiu, B. E. Fuchs, and W. Y. Lee, Electrochem. Commun. 13, 355 (2011).
32. P. C. Chen, G. Shen, S. Sukcharoenchoke, and C. Zhou, Appl. Phys. Lett. 94, 043113 (2009).
33. Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 108, 1301313018 (2011).

Data & Media loading...


Article metrics loading...



In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol)/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ∼67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd