1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/1/10.1063/1.4808438
1.
1. Q. Wan, E. N. Dattoli, and W. Lu, Appl. Phys. Lett. 90, 222107 (2007).
http://dx.doi.org/10.1063/1.2743746
2.
2. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature (London) 357, 477 (1992).
http://dx.doi.org/10.1038/357477a0
3.
3. D. C. Look, K. D. Leedy, D. H. Tomich, and B. Bayraktaroglu, Appl. Phys. Lett. 96, 062102 (2010).
http://dx.doi.org/10.1063/1.3310043
4.
4. S. X. Zhang, S. Dhar, W. Yu, H. Xu, S. B. Ogale, and T. Venkatesan, Appl. Phys. Lett. 91, 112113 (2007).
http://dx.doi.org/10.1063/1.2785152
5.
5. V. Bhosle, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 88, 032106 (2006).
http://dx.doi.org/10.1063/1.2165281
6.
6. K. L. Chopra, S. K. Major, and D. K. Pandya, Thin Solid Films 102, 1 (1983).
http://dx.doi.org/10.1016/0040-6090(83)90256-0
7.
7. H. Han, N. D. Theodore, and T. L. Alford, J. Appl. Phys. 103, 013708 (2008).
http://dx.doi.org/10.1063/1.2829788
8.
8. A. Dhar and T. L. Alford, J. Appl. Phys. 112, 103113 (2012).
http://dx.doi.org/10.1063/1.4767662
9.
9. A. Indluru and T. L. Alford, J. Appl. Phys. 105, 123528 (2009).
http://dx.doi.org/10.1063/1.3153977
10.
10. T. Y. Park, Y. S. Choi, J. W. Kang, J. H. Jeong, S. J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, Appl. Phys. Lett. 96, 051124 (2010).
http://dx.doi.org/10.1063/1.3298644
11.
11. C. Guillén and J. Herrero, Thin Solid Films 520, 1 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.06.091
12.
12. D. S. Ghosh, T. L. Chen, and V. Pruneri, Appl. Phys. Lett. 96, 041109 (2010).
http://dx.doi.org/10.1063/1.3299259
13.
13. K. Sivaramakrishnan and T. L. Alford, J. Appl. Phys. 106, 063510 (2009).
http://dx.doi.org/10.1063/1.3213385
14.
14. I. Dima, B. Popescu, F. Iova, and G. Popescu, Thin Solid Films 200, 11 (1991).
http://dx.doi.org/10.1016/0040-6090(91)90026-T
15.
15. C. H. Heo, S.-B. Lee, and J.-H. Boo, Thin Solid Films 475, 183 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.08.033
16.
16. K. Hashimoto, H. Irie, and A. Fujhishima, Jpn. J. Appl. Phys. 44, 8269 (2005).
http://dx.doi.org/10.1143/JJAP.44.8269
17.
17. T. Muller and H. Nienhaus, J. Appl. Phys. 93, 924 (2003).
http://dx.doi.org/10.1063/1.1530714
18.
18. R. Koch, J. Phys.: Condens. Matter 6, 9519 (1994).
http://dx.doi.org/10.1088/0953-8984/6/45/005
19.
19. R. L. Petritz, Phys. Rev. 104, 1508 (1956).
http://dx.doi.org/10.1103/PhysRev.104.1508
20.
20. K. Sivaramakrishnan and T. L. Alford, Appl. Phys. Lett. 94, 052104 (2009).
http://dx.doi.org/10.1063/1.3077184
21.
21. D. Zhang, H. Yabe, E. Akita, P. Wang, R. Murakami, and X. Song, J. Appl. Phys. 109, 104318 (2011).
http://dx.doi.org/10.1063/1.3592975
22.
22. K. Sivaramakrishnan and T. L. Alford, Appl. Phys. Lett. 96, 201109 (2010).
http://dx.doi.org/10.1063/1.3435467
23.
23. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.1382
24.
24. D. Zhang, P. Wang, R. Murakami, and X. Song, Appl. Phys. Lett. 96, 233114 (2010).
http://dx.doi.org/10.1063/1.3442916
25.
25. P. Wang, D. Zhang, D. H. Kim, Z. Qiu, L. Gao, R. Murakami, and X. Song, J. Appl. Phys. 106, 103104 (2009).
http://dx.doi.org/10.1063/1.3259426
26.
26. R. Doremus, Thin Solid Films 326, 205 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00554-9
27.
27. G. Haacke, J. Appl. Phys. 47, 4086 (1976).
http://dx.doi.org/10.1063/1.323240
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4808438
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM images of Ag thin film deposited on bottom TiO surface with different Ag thicknesses: (a) 5 nm, (b) 9.5 nm, and (c) 13 nm.

Image of FIG. 2.

Click to view

FIG. 2.

Carrier concentration and Hall mobility as a function of Ag thickness for TAT multilayers.

Image of FIG. 3.

Click to view

FIG. 3.

Schematic diagram of parallel resistor in TAT multilayer electrode.

Image of FIG. 4.

Click to view

FIG. 4.

Effective resistivity and sheet resistance of TAT multilayer films as a function of Ag thickness.

Image of FIG. 5.

Click to view

FIG. 5.

Transmittance spectra for TiO/Ag/TiO (TAT) multilayers on PEN substrate as a function of silver thickness.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/1/10.1063/1.4808438
2013-06-07
2014-04-16

Abstract

Multilayer structures of TiO/Ag/TiO have been deposited onto flexible substrates by room temperature sputtering to develop indium-free transparent composite electrodes. The effect of Ag thicknesses on optical and electrical properties and the mechanism of conduction have been discussed. The critical thickness (t) of Ag mid-layer to form a continuous conducting layer is 9.5 nm and the multilayer has been optimized to obtain a sheet resistance of 5.7 Ω/sq and an average optical transmittance of 90% at 590 nm. The Haacke figure of merit (FOM) for t has one of the highest FOMs with 61.4 × 10 Ω/sq.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/1/1.4808438.html;jsessionid=53dlf37krndc7.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/1/10.1063/1.4808438&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4808438
10.1063/1.4808438
SEARCH_EXPAND_ITEM