1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Validity of rigid band approximation of PbTe thermoelectric materials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/1/10.1063/1.4809545
1.
1. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957).
2.
2. G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
3.
3. G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).
http://dx.doi.org/10.1073/pnas.93.15.7436
4.
4. G. S. Nolas, J. L. Cohn, and G. A. Slack, Phys. Rev. B 58, 164 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.164
5.
5. M. G. Kanatzidis, Chem. Mater. 22, 648 (2010).
http://dx.doi.org/10.1021/cm902195j
6.
6. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 (2008).
http://dx.doi.org/10.1126/science.1159725
7.
7. B. Yu, Q. Zhang, H. Wang, X. Wang, H. Wang, D. Wang, H. Wang, G. J. Snyder, G. Chen, and Z. F. Ren, J. Appl. Phys. 108, 016104 (2010).
http://dx.doi.org/10.1063/1.3452323
8.
8. J. Androulakis, I. Toborov, D.-Y. Chung, S. Ballikaya, G. Wang, C. Uher, and M. Kanatzidis, Phys. Rev. B 82, 115209 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115209
9.
9. C. M. Jaworski, B. Wiendlocha, V. Jovovic, and J. P. Heremans, Energy Environ. Sci. 4, 4155 (2011).
http://dx.doi.org/10.1039/c1ee01895g
10.
10. Y. Pei, X. Shi, A. D. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature (London) 473, 66 (2011).
http://dx.doi.org/10.1038/nature09996
11.
11. Y. Pei, A. D. LaLonde, S. Iwanaga, and G. J. Snyder, Energy Environ. Sci. 4, 2085 (2011).
http://dx.doi.org/10.1039/c0ee00456a
12.
12. A. D. LaLonde, Y. Pei, and G. J. Snyder, Energy Environ. Sci. 4, 2090 (2011).
http://dx.doi.org/10.1039/c1ee01314a
13.
13. A. D. LaLonde, Y. Pei, H. Wang, and G. J. Snyder, Mater. Today 14, 526 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70278-4
14.
14. Y. Pei, A. D. LaLonde, N. A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G. J. Snyder, Adv. Mater. 23, 5674 (2011).
http://dx.doi.org/10.1002/adma.201103153
15.
15. J. P. Heremans, B. Wiendlocha, and A. M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).
http://dx.doi.org/10.1039/c1ee02612g
16.
16. Q. Zhang, H. Wang, Q. Zhang, W. Liu, B. Yu, H. Wang, D. Wang, G. Ni, G. Chen, and Z. Ren, Nano Lett. 12, 2324 (2012).
http://dx.doi.org/10.1021/nl3002183
17.
17. Y. Pei, A. D. LaLonde, H. Wang, and G. J. Snyder, Energy Environ. Sci. 5, 7963 (2012).
http://dx.doi.org/10.1039/c2ee21536e
18.
18. Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, and Z. Ren, J. Am. Chem. Soc. 134, 10031 (2012).
http://dx.doi.org/10.1021/ja301245b
19.
19. Y. Pei, H. Wang, Z. M. Gibbs, A. D. LaLonde, and G. J. Snyder, NPG Asia Mater. 4, e28 (2012).
http://dx.doi.org/10.1038/am.2012.52
20.
20. A. Popescu and L. M. Woods, Appl. Phys. Lett. 97, 052102 (2010).
http://dx.doi.org/10.1063/1.3464288
21.
21. Y. Pei, J. Lensch-Falk, E. S. Toberer, D. L. Medlin, and G. J. Snyder, Adv. Funct. Mater. 21, 241 (2011).
http://dx.doi.org/10.1002/adfm.201000878
22.
22. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Chem. 3, 160 (2011).
http://dx.doi.org/10.1038/nchem.955
23.
23. Y. Pei, N. A. Heinz, A. LaLonde, and G. J. Snyder, Energy Environ. Sci. 4, 3640 (2011).
http://dx.doi.org/10.1039/c1ee01928g
24.
24. J. Ana, A. Subedi, and D. J. Singh, Solid State Commun. 148, 417 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.09.027
25.
25. E. S. Božin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G. Kanatzidis, and S. J. L. Billinge, Science 330, 1660 (2010).
http://dx.doi.org/10.1126/science.1192759
26.
26. O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M. H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, and B. C. Sales, Nature Mater. 10, 614 (2011).
http://dx.doi.org/10.1038/nmat3035
27.
27. Y. I. Ravich, B. A. Efimova, and I. A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, New York, 1970).
28.
28. D. J. Singh, Phys. Rev. B 81, 195217 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195217
29.
29. A. Svane, N. E. Christensen, M. Cardona, A. N. Chantis, M. van Schilfgaarde, and T. Kotani, Phys. Rev. B 81, 245120 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245120
30.
30. S. Ahmad, S. D. Mahanti, K. Hoang, and M. G. Kanatzidis, Phys. Rev. B 74, 155205 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155205
31.
31. M.-S. Lee and S. D. Mahanti, Phys. Rev. B 85, 165149 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.165149
32.
32. D. Parker and D. J. Singh, Phys. Rev. B 82, 035204 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.035204
33.
33. K. Hoang, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B 81, 115106 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115106
34.
34. H. Peng, J.-H. Song, M. G. Kanatzidis, and A. J. Freeman, Phys. Rev. B 84, 125207 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.125207
35.
35. H. Akai, J. Phys. Soc. Jpn. 51, 468 (1982).
http://dx.doi.org/10.1143/JPSJ.51.468
36.
36. H. Akai, J. Phys.: Condens. Matter 1, 8045 (1989).
http://dx.doi.org/10.1088/0953-8984/1/43/006
37.
37. M. Schröter, H. Ebert, H. Akai, P. Entel, E. Hoffmann, and G. G. Reddy, Phys. Rev. B 52, 188 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.188
38.
38. C. M. Jaworski, J. Tobola, E. M. Levin, K. Schmidt-Rohr, and J. P. Heremans, Phys. Rev. B 80, 125208 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125208
39.
39. Y. Takagiwa, Y. Pei, G. Pomrehn, and G. J. Snyder, Appl. Phys. Lett. 101, 092102 (2012).
http://dx.doi.org/10.1063/1.4748363
40.
40. Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, Phys. Rev. Lett. 94, 157002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.157002
41.
41. Y. Matsushita, P. A. Wianecki, A. T. Sommer, T. H. Geballe, and I. R. Fisher, Phys. Rev. B 74, 134512 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.134512
42.
42. R. Dalven, Infrared Phys. 9, 141 (1969).
http://dx.doi.org/10.1016/0020-0891(69)90022-0
43.
43. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
http://dx.doi.org/10.1088/0022-3719/5/13/012
44.
44. K. Hoang and S. D. Mahanti, Phys. Rev. B 78, 085111 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085111
45.
45. R. W. Fritts, in Thermoelectric Materials and Devices, edited by I. B. Cadoff and E. Miller (Reinhold Pub. Corp., New York, 1960), pp. 143.
46.
46. I. A. Chernik, V. I. Kaidanov, M. I. Vinogradova, and N. V. Kolomoets, Sov. Phys. Semicond. 2, 645 (1968).
47.
47. S.-H. Wei and A. Zunger, Phys. Rev. B 55, 13605 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.13605
48.
48. A. Zaoui, S. Kacimi, M. Zaoui, and B. Bouhafs, Mater. Chem. Phys. 114, 650 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.10.020
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4809545
Loading
/content/aip/journal/aplmater/1/1/10.1063/1.4809545
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/1/10.1063/1.4809545
2013-06-07
2014-09-19

Abstract

The tuning of carrier concentration through chemical doping is very important for the optimization of thermoelectric materials. Traditionally, a rigid band model is used to understand and guide doping in such semiconductors, but it is not clear whether such an approximation is valid. This letter focuses on the changes in the electronic density of states (DOS) near the valence band maximum for different -type dopants (Na, K, Tl, or vacancy on Pb site) maintaining the high symmetry of the NaCl structure. Na- and K-doped, and vacancy-introduced PbTe show a clear rigid-band like change in DOS unlike that concluded from supercell based calculations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/1/1.4809545.html;jsessionid=7htr5pi94t2kn.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/1/10.1063/1.4809545&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Validity of rigid band approximation of PbTe thermoelectric materials
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4809545
10.1063/1.4809545
SEARCH_EXPAND_ITEM