1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3-δ thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/1/10.1063/1.4809547
1.
1. D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, and H. v. Lohhneysen, Phys. Rev. B 75, 144402 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.144402
2.
2. D. Fuchs, E. Arac, C. Pinta, S. Schuppler, R. Schneider, and H. v. Lohneysen, Phys. Rev. B 77, 014434 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.014434
3.
3. H. Seo, A. Posadas and A. A. Demkov, Phys. Rev. B 86, 014430 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.014430
4.
4. J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.174408
5.
5. G. H. Jonker and J. H. Van Santen, Physica 19, 120130 (1953).
http://dx.doi.org/10.1016/S0031-8914(53)80011-X
6.
6. R. F. Klie, Y. Ito, S. Stemmer and N. D. Browning, Ultramicroscopy 86(3-4), 289302 (2001).
http://dx.doi.org/10.1016/S0304-3991(00)00120-0
7.
7. Y. Ito, R. F. Klie, N. D. Browning, and T. J. Mazanec, J. Am. Ceram. Soc. 85, 969976 (2002).
http://dx.doi.org/10.1111/j.1151-2916.2002.tb00201.x
8.
8. M. A. Torija, M. Sharma, J. Gazquez, M. Varela, C. He, J. Schmitt, J. A. Borchers, M. Laver, S. El-Khatib, and C. Leighton, Adv. Mater. 23, 2711 (2011).
http://dx.doi.org/10.1002/adma.201100417
9.
9. M. A. Torija, M. Sharma, M. R. Fitzsimmons, M. Varela, and C. Leighton, J. Appl. Phys. 104, 023901 (2008).
http://dx.doi.org/10.1063/1.2955725
10.
10. D. O. Klenov, W. Donner, B. Foran, and S. Stemmer, Appl. Phys. Lett. 82, 34273429 (2003).
http://dx.doi.org/10.1063/1.1575503
11.
11. J. Gazquez, W. Luo, M. P. Oxley, M. Prange, M. A. Torija, M. Sharma, C. Leighton, S. T. Pantelides, S. J. Pennycook, and M. Varela, Nano Lett. 11, 973976 (2011).
http://dx.doi.org/10.1021/nl1034896
12.
12. W. Donner, C. Chen, M. Liu, A. J. Jacobson, Y.-L. Lee, M. Gadre, and D. Morgan, Chem. Mater. 23, 984988 (2011).
http://dx.doi.org/10.1021/cm102657v
13.
13. M. Sharma, J. Gazquez, M. Varela, J. Schmitt, and C. Leighton, Phys. Rev. B 84, 024417 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.024417
14.
14. S. C. Wimbush, M. Li, M. E. Vickers, B. Maiorov, D. M. Feldmann, Q. Jia, and J. L. MacManus-Driscoll, Adv. Funct. Mater. 19, 835841 (2009).
http://dx.doi.org/10.1002/adfm.200801112
15.
15. M. Sharma, J. Gazquez, M. Varela, J. Schmitt, and C. Leighton, J. Vac. Sci. Technol. 29, 051511 (2011).
http://dx.doi.org/10.1116/1.3622621
16.
16.See http://www.hremresearch.com for HREM Research.
17.
17. M. J. Hytch, E. Snoeck, and R. Kilaas, Ultramicroscopy 74, 131146 (1998).
http://dx.doi.org/10.1016/S0304-3991(98)00035-7
18.
18. D. O. Klenov, W. Donner, L. Chen, A. J. Jacobson, and S. Stemmer, J. Mater. Res. 18, 188194 (2003).
http://dx.doi.org/10.1557/JMR.2003.0026
19.
19. Y. M. Kim, J. He, M. D. Biegalski, H. Ambaye, V. Lauter, H. M. Christen, S. T. Pantelides, S. J. Pennycook, S. V. Kalinin, and A. Y. Borisevich, Nature Mater. 11, 888894 (2012).
http://dx.doi.org/10.1038/nmat3393
20.
20. A. Y. Borisevich, A. N. Morozovska, Y. M. Kim, D. Leonard, M. P. Oxley, M. D. Biegalski, E. A. Eliseev, and S. V. Kalinin, Phys. Rev. Lett. 109, 065702 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.065702
21.
21. S. Stemmer, A. J. Jacobson, X. Chen, and A. Ignatiev, J. Appl. Phys. 90, 3319 (2001).
http://dx.doi.org/10.1063/1.1401793
22.
22. W. S. Choi, J.-H. Kwon, H. Jeen, J. E. Hamann-Borrero, A. Radi, S. Macke, R. Sutarto, F. He, G. A. Sawatzky, V. Hinkov, M. Kim, and H. N. Lee, Nano Lett. 12, 49664970 (2012).
http://dx.doi.org/10.1021/nl302562f
23.
23. S. Ramesh, S. S. Manoharan, and M. S. Hedge, J. Mater. Chem. 5, 1053 (1995).
http://dx.doi.org/10.1039/jm9950501053
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4809547
Loading
/content/aip/journal/aplmater/1/1/10.1063/1.4809547
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/1/10.1063/1.4809547
2013-07-01
2014-07-11

Abstract

The properties of complex oxide films depend sensitively on epitaxial strain. This strain affects bond lengths and angles, and defect types and densities, thus impacting physical properties. In this work we perform detailed characterization of depth-dependent strain in epitaxial LaSrCoO (LSCO) films on SrTiO(001), SrTiO(110), and LaAlO(001) substrates, combining high resolution x-ray diffraction and scanning transmission electron microscopy, in addition to geometric phase analysis. We elucidate a fundamental link between strain state and O vacancy ordering in LSCO films, where lattice mismatch and crystallographic orientation can be used to manipulate the modulation vector of the long-range vacancy order, thus providing a new approach to tailor the properties of such films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/1/1.4809547.html;jsessionid=1jjnh478dafdg.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/1/10.1063/1.4809547&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La<sub>0.5</sub>Sr<sub>0.5</sub>CoO<sub>3-δ</sub> thin films
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4809547
10.1063/1.4809547
SEARCH_EXPAND_ITEM