1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/1/10.1063/1.4812323
1.
1. U.S.D. of Energy, Department of Energy Workshop: Computational Materials Science and Chemistry for Innovation (2010).
2.
2. S. L. Moskowitz, The Advanced Materials Revolution: Technology and Economic Growth in the Age of Globalization (John Wiley & Sons, Inc., New York, 2009).
3.
3.Materials Genome Initiative for Global Competitiveness (2011).
4.
4. E. Schrödinger, Phys. Rev. 22, 1049 (1926).
http://dx.doi.org/10.1103/PhysRev.28.1049
5.
5. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
6.
6. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
7.
7. J. Hafner, C. Wolverton, and G. Ceder, MRS Bull. 31, 659 (2006).
http://dx.doi.org/10.1557/mrs2006.174
8.
8. G. Hautier, A. Jain, and S. P. Ong, J. Mater. Sci. 47, 7317 (2012).
http://dx.doi.org/10.1007/s10853-012-6424-0
9.
9. I. E. Castelli, D. D. Landis, K. S. Thygesen, S. Dahl, I. Chorkendorff, T. F. Jaramillo, and K. W. Jacobsen, Energy Environ. Sci. 5, 9034 (2012).
http://dx.doi.org/10.1039/c2ee22341d
10.
10. I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Energy Environ. Sci. 5, 5814 (2012).
http://dx.doi.org/10.1039/c1ee02717d
11.
11. L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.068701
12.
12. K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli, and S. Curtarolo, Nature Mater. 11, 614 (2012).
http://dx.doi.org/10.1038/nmat3332
13.
13. C. Ortiz, O. Eriksson, and M. Klintenberg, Comput. Mater. Sci. 44, 1042 (2009).
http://dx.doi.org/10.1016/j.commatsci.2008.07.016
14.
14. W. Setyawan, R. M. Gaume, S. Lam, R. S. Feigelson, and S. Curtarolo, ACS Comb. Sci. 13, 382 (2011).
http://dx.doi.org/10.1021/co200012w
15.
15. L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, and B. Smit, Nature Mater. 11, 633 (2012).
http://dx.doi.org/10.1038/nmat3336
16.
16. R. Armiento, B. Kozinsky, M. Fornari, and G. Ceder, Phys. Rev. B 84, 014103 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014103
17.
17. S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S. Curtarolo, Phys. Rev. X 1, 021012 (2011).
http://dx.doi.org/10.1103/PhysRevX.1.021012
18.
18. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, Comput. Mater. Sci. 58, 227 (2012).
http://dx.doi.org/10.1016/j.commatsci.2012.02.002
19.
19. J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Nørskov, Nature Mater. 5, 909 (2006).
http://dx.doi.org/10.1038/nmat1752
20.
20. S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. B 110, 8769 (2006).
http://dx.doi.org/10.1021/jp060482m
21.
21. J. Lu, Z. Z. Fang, Y. J. Choi, and H. Y. Sohn, J. Phys. Chem. C 111, 12129 (2007).
http://dx.doi.org/10.1021/jp0733724
22.
22. J. C. Kim, C. J. Moore, B. Kang, G. Hautier, A. Jain, and G. Ceder, J. Electrochem. Soc. 158, A309 (2011).
http://dx.doi.org/10.1149/1.3536532
23.
23. H. Chen, G. Hautier, A. Jain, C. J. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, and G. Ceder, Chemistry of Materials 24, 2009 (2012).
http://dx.doi.org/10.1021/cm203243x
24.
24. A. Jain, G. Hautier, C. Moore, B. Kang, J. Lee, H. Chen, N. Twu, and G. Ceder, J. Electrochem. Soc. 159, A622 (2012).
http://dx.doi.org/10.1149/2.080205jes
25.
25. G. Hautier, A. Jain, H. Chen, C. Moore, S. P. Ong, and G. Ceder, J. Mater. Chem. 21, 17147 (2011).
http://dx.doi.org/10.1039/c1jm12216a
26.
26. H. Chen, G. Hautier, and G. Ceder, J. Am. Chem. Soc. 134, 19619 (2012).
http://dx.doi.org/10.1021/ja3040834
27.
27. J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Sánchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, and A. Aspuru-Guzik, J. Phys. Chem. Lett. 2, 2241 (2011).
http://dx.doi.org/10.1021/jz200866s
28.
28. J. S. Hummelshøj, F. Abild-Pedersen, F. Studt, T. Bligaard, and J. K. Nørskov, Angew. Chem., Int. Ed. Engl. 51, 272 (2012).
http://dx.doi.org/10.1002/anie.201107947
29.
29.See http://www.github.com/materialsproject for downloadable source code and documentation.
30.
30. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
31.
31. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
32.
32. A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, Acta Crystallogr., Sect. B: Struct. Sci. 58, 364 (2002).
http://dx.doi.org/10.1107/S0108768102006948
33.
33. G. Bergerhoff, R. Hundt, R. Sievers, and I. D. I. Brown, J. Chem. Inf. Comput. Sci. 23, 66 (1983).
http://dx.doi.org/10.1021/ci00038a003
34.
34. S. M. Woodley and R. Catlow, Nature Mater. 7, 937 (2008).
http://dx.doi.org/10.1038/nmat2321
35.
35. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).
http://dx.doi.org/10.1063/1.2210932
36.
36. M. d’Avezac, J.-W. Luo, T. Chanier, and A. Zunger, Phys. Rev. Lett. 108, 027401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.027401
37.
37. S. Dudiy and A. Zunger, Phys. Rev. Lett. 97, 046401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.046401
38.
38. G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, and G. Ceder, Inorg. Chem. 50, 656 (2011).
http://dx.doi.org/10.1021/ic102031h
39.
39. G. Hautier, C. C. Fischer, A. Jain, T. Mueller, and G. Ceder, Chem. Mater. 22, 3762 (2010).
http://dx.doi.org/10.1021/cm100795d
40.
40. C. C. Fischer, K. J. Tibbetts, D. Morgan, and G. Ceder, Nature Mater. 5, 641 (2006).
http://dx.doi.org/10.1038/nmat1691
41.
41. L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73, 195107 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195107
42.
42. S. Grindy, B. Meredig, S. Kirklin, J. E. Saal, and C. Wolverton, Phys. Rev. B 87, 075150 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075150
43.
43. S. Lany, Phys. Rev. B 78, 245207 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.245207
44.
44. J. Yan, J. S. Hummelshøj, and J. K. Nørskov, Phys. Rev. B 87, 075207 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075207
45.
45. A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson, and G. Ceder, Phys. Rev. B 84, 045115 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045115
46.
46. K. A. Persson, B. Waldwick, P. Lazic, and G. Ceder, Phys. Rev. B 85, 235438 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235438
47.
47. L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
48.
48. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).
http://dx.doi.org/10.1063/1.2085170
49.
49. M. Chan and G. Ceder, Phys. Rev. Lett. 105, 196403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.196403
50.
50. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
51.
51. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 5 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
52.
52. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
53.
53. H. Rydberg, M. Dion, and N. Jacobson, Phys. Rev. Lett. 91, 126402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.126402
54.
54. B. Lundqvist and Y. Andersson, Int. J. Quantum Chem. 56, 247 (1995).
http://dx.doi.org/10.1002/qua.560560410
55.
55. S. P. Ong, A. Jain, G. Hautier, B. Kang, and G. Ceder, Electrochem. Commun. 12, 427 (2010).
http://dx.doi.org/10.1016/j.elecom.2010.01.010
56.
56. S. Ong, L. Wang, B. Kang, and G. Ceder, Chem. Mater. 20, 1798 (2008).
http://dx.doi.org/10.1021/cm702327g
57.
57. D. Gunter, S. Cholia, A. Jain, M. Kocher, K. Persson, L. Ramakrishnan, S. P. Ong, and G. Ceder, in Proceedings of the 5th Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS), 2012.
58.
58. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
59.
59. J. J. Rehr, Rev. Mod. Phys. 72, 621 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.621
60.
60. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
61.
61.10Gen Inc., see http://www.mongodb.org.
62.
62. J. Rustad, Am. Mineral. 97, 791 (2012).
http://dx.doi.org/10.2138/am.2012.3948
63.
63. T. T. Tran and M. N. Obrovac, J. Electrochem. Soc. 158, A1411 (2011).
http://dx.doi.org/10.1149/2.083112jes
64.
64. M. Meinert and M. P. Geisler, J. Magn. Magn. Mater. 341, 72 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.04.025
65.
66.
66. O. A. Bannykh, R. M. Volkova, and V. A. Bozhenov, Russ. Metall. 2, 202 (1984).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4812323
Loading
/content/aip/journal/aplmater/1/1/10.1063/1.4812323
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/1/10.1063/1.4812323
2013-07-18
2014-10-23

Abstract

Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials , and provide researchers with new avenues for cost-effective, data-driven materials design.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/1/1.4812323.html;jsessionid=27so5vlh3of0c.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/1/10.1063/1.4812323&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4812323
10.1063/1.4812323
SEARCH_EXPAND_ITEM