1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/1/10.1063/1.4812323
1.
1. U.S.D. of Energy, Department of Energy Workshop: Computational Materials Science and Chemistry for Innovation (2010).
2.
2. S. L. Moskowitz, The Advanced Materials Revolution: Technology and Economic Growth in the Age of Globalization (John Wiley & Sons, Inc., New York, 2009).
3.
3.Materials Genome Initiative for Global Competitiveness (2011).
4.
4. E. Schrödinger, Phys. Rev. 22, 1049 (1926).
http://dx.doi.org/10.1103/PhysRev.28.1049
5.
5. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
6.
6. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
7.
7. J. Hafner, C. Wolverton, and G. Ceder, MRS Bull. 31, 659 (2006).
http://dx.doi.org/10.1557/mrs2006.174
8.
8. G. Hautier, A. Jain, and S. P. Ong, J. Mater. Sci. 47, 7317 (2012).
http://dx.doi.org/10.1007/s10853-012-6424-0
9.
9. I. E. Castelli, D. D. Landis, K. S. Thygesen, S. Dahl, I. Chorkendorff, T. F. Jaramillo, and K. W. Jacobsen, Energy Environ. Sci. 5, 9034 (2012).
http://dx.doi.org/10.1039/c2ee22341d
10.
10. I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Energy Environ. Sci. 5, 5814 (2012).
http://dx.doi.org/10.1039/c1ee02717d
11.
11. L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.068701
12.
12. K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli, and S. Curtarolo, Nature Mater. 11, 614 (2012).
http://dx.doi.org/10.1038/nmat3332
13.
13. C. Ortiz, O. Eriksson, and M. Klintenberg, Comput. Mater. Sci. 44, 1042 (2009).
http://dx.doi.org/10.1016/j.commatsci.2008.07.016
14.
14. W. Setyawan, R. M. Gaume, S. Lam, R. S. Feigelson, and S. Curtarolo, ACS Comb. Sci. 13, 382 (2011).
http://dx.doi.org/10.1021/co200012w
15.
15. L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, and B. Smit, Nature Mater. 11, 633 (2012).
http://dx.doi.org/10.1038/nmat3336
16.
16. R. Armiento, B. Kozinsky, M. Fornari, and G. Ceder, Phys. Rev. B 84, 014103 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014103
17.
17. S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S. Curtarolo, Phys. Rev. X 1, 021012 (2011).
http://dx.doi.org/10.1103/PhysRevX.1.021012
18.
18. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, Comput. Mater. Sci. 58, 227 (2012).
http://dx.doi.org/10.1016/j.commatsci.2012.02.002
19.
19. J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Nørskov, Nature Mater. 5, 909 (2006).
http://dx.doi.org/10.1038/nmat1752
20.
20. S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. B 110, 8769 (2006).
http://dx.doi.org/10.1021/jp060482m
21.
21. J. Lu, Z. Z. Fang, Y. J. Choi, and H. Y. Sohn, J. Phys. Chem. C 111, 12129 (2007).
http://dx.doi.org/10.1021/jp0733724
22.
22. J. C. Kim, C. J. Moore, B. Kang, G. Hautier, A. Jain, and G. Ceder, J. Electrochem. Soc. 158, A309 (2011).
http://dx.doi.org/10.1149/1.3536532
23.
23. H. Chen, G. Hautier, A. Jain, C. J. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, and G. Ceder, Chemistry of Materials 24, 2009 (2012).
http://dx.doi.org/10.1021/cm203243x
24.
24. A. Jain, G. Hautier, C. Moore, B. Kang, J. Lee, H. Chen, N. Twu, and G. Ceder, J. Electrochem. Soc. 159, A622 (2012).
http://dx.doi.org/10.1149/2.080205jes
25.
25. G. Hautier, A. Jain, H. Chen, C. Moore, S. P. Ong, and G. Ceder, J. Mater. Chem. 21, 17147 (2011).
http://dx.doi.org/10.1039/c1jm12216a
26.
26. H. Chen, G. Hautier, and G. Ceder, J. Am. Chem. Soc. 134, 19619 (2012).
http://dx.doi.org/10.1021/ja3040834
27.
27. J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Sánchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, and A. Aspuru-Guzik, J. Phys. Chem. Lett. 2, 2241 (2011).
http://dx.doi.org/10.1021/jz200866s
28.
28. J. S. Hummelshøj, F. Abild-Pedersen, F. Studt, T. Bligaard, and J. K. Nørskov, Angew. Chem., Int. Ed. Engl. 51, 272 (2012).
http://dx.doi.org/10.1002/anie.201107947
29.
29.See http://www.github.com/materialsproject for downloadable source code and documentation.
30.
30. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
31.
31. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
32.
32. A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, Acta Crystallogr., Sect. B: Struct. Sci. 58, 364 (2002).
http://dx.doi.org/10.1107/S0108768102006948
33.
33. G. Bergerhoff, R. Hundt, R. Sievers, and I. D. I. Brown, J. Chem. Inf. Comput. Sci. 23, 66 (1983).
http://dx.doi.org/10.1021/ci00038a003
34.
34. S. M. Woodley and R. Catlow, Nature Mater. 7, 937 (2008).
http://dx.doi.org/10.1038/nmat2321
35.
35. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).
http://dx.doi.org/10.1063/1.2210932
36.
36. M. d’Avezac, J.-W. Luo, T. Chanier, and A. Zunger, Phys. Rev. Lett. 108, 027401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.027401
37.
37. S. Dudiy and A. Zunger, Phys. Rev. Lett. 97, 046401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.046401
38.
38. G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, and G. Ceder, Inorg. Chem. 50, 656 (2011).
http://dx.doi.org/10.1021/ic102031h
39.
39. G. Hautier, C. C. Fischer, A. Jain, T. Mueller, and G. Ceder, Chem. Mater. 22, 3762 (2010).
http://dx.doi.org/10.1021/cm100795d
40.
40. C. C. Fischer, K. J. Tibbetts, D. Morgan, and G. Ceder, Nature Mater. 5, 641 (2006).
http://dx.doi.org/10.1038/nmat1691
41.
41. L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73, 195107 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195107
42.
42. S. Grindy, B. Meredig, S. Kirklin, J. E. Saal, and C. Wolverton, Phys. Rev. B 87, 075150 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075150
43.
43. S. Lany, Phys. Rev. B 78, 245207 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.245207
44.
44. J. Yan, J. S. Hummelshøj, and J. K. Nørskov, Phys. Rev. B 87, 075207 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075207
45.
45. A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson, and G. Ceder, Phys. Rev. B 84, 045115 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045115
46.
46. K. A. Persson, B. Waldwick, P. Lazic, and G. Ceder, Phys. Rev. B 85, 235438 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235438
47.
47. L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
48.
48. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).
http://dx.doi.org/10.1063/1.2085170
49.
49. M. Chan and G. Ceder, Phys. Rev. Lett. 105, 196403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.196403
50.
50. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
51.
51. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 5 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
52.
52. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
53.
53. H. Rydberg, M. Dion, and N. Jacobson, Phys. Rev. Lett. 91, 126402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.126402
54.
54. B. Lundqvist and Y. Andersson, Int. J. Quantum Chem. 56, 247 (1995).
http://dx.doi.org/10.1002/qua.560560410
55.
55. S. P. Ong, A. Jain, G. Hautier, B. Kang, and G. Ceder, Electrochem. Commun. 12, 427 (2010).
http://dx.doi.org/10.1016/j.elecom.2010.01.010
56.
56. S. Ong, L. Wang, B. Kang, and G. Ceder, Chem. Mater. 20, 1798 (2008).
http://dx.doi.org/10.1021/cm702327g
57.
57. D. Gunter, S. Cholia, A. Jain, M. Kocher, K. Persson, L. Ramakrishnan, S. P. Ong, and G. Ceder, in Proceedings of the 5th Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS), 2012.
58.
58. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
59.
59. J. J. Rehr, Rev. Mod. Phys. 72, 621 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.621
60.
60. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
61.
61.10Gen Inc., see http://www.mongodb.org.
62.
62. J. Rustad, Am. Mineral. 97, 791 (2012).
http://dx.doi.org/10.2138/am.2012.3948
63.
63. T. T. Tran and M. N. Obrovac, J. Electrochem. Soc. 158, A1411 (2011).
http://dx.doi.org/10.1149/2.083112jes
64.
64. M. Meinert and M. P. Geisler, J. Magn. Magn. Mater. 341, 72 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.04.025
65.
66.
66. O. A. Bannykh, R. M. Volkova, and V. A. Bozhenov, Russ. Metall. 2, 202 (1984).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4812323
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Overview of the Materials Project thrusts. Computed data are validated, disseminated to the user community, and fed into analysis that is ultimately used to design new compounds for subsequent computations.

Image of FIG. 2.

Click to view

FIG. 2.

Number of compounds available on the Materials Project web site since the initial release in October 2011, broken down by type of compound.

Image of FIG. 3.

Click to view

FIG. 3.

Band structure and density of states for Si from the Materials Project web site, with a visual warning and link to more information at bottom regarding limitations to the accuracy of computed band gaps (the measured band gap of Si is about 1.1 eV).

Image of FIG. 4.

Click to view

FIG. 4.

Screenshot of the top portion of the details page for FeO. The page also contains electronic structure information (Figure 3 ), and (not shown) the lattice parameters and atomic positions of the structure, a calculated x-ray diffraction pattern, and basic calculation parameters and output.

Image of FIG. 5.

Click to view

FIG. 5.

Low-temperature phase diagram of Ti–Ni–O generated by the PDApp (left) and at 750 °C from ASM online (right). Overall, the diagrams are very similar; a major difference is the presence of TiO and several Ti-peroxide suboxide phases (Ti0, TiO) in the computational diagram.

Image of FIG. 6.

Click to view

FIG. 6.

Distribution of oxygen coordinations for chromium in oxides. The percentage of 4-fold and 6-fold coordinated sites for different Cr oxidation states is given. This analysis can be performed with a few lines of codes using pymatgen and the REST interface.

Image of FIG. 7.

Click to view

FIG. 7.

Rapid prototyping and iterative materials design steps that might be performed .

Image of FIG. 8.

Click to view

FIG. 8.

Example of computationally driven design of new Li-ion battery cathodes. (Top-left) A family of compounds containing Na, a transition metal, and mixed polyanion group is investigated computationally for stability (the corresponding Li compounds were computed to be too unstable for direct synthesis). The ground state “hull” connects the energy of all ground state phases in an energy-composition diagram. The energy above hull is a computed descriptor of the stability of a compound, and in essence describes the thermodynamic decomposition energy of the compound into the most stable phases. Thermodynamically stable compounds exhibit an energy above hull of zero, with greater values indicating decreasing stability. (Top-right) Electrochemical properties are calculated for Li versions of compounds predicted to be stable in the Na form, such as the Fe-containing phosphocarbonate. (Bottom-left) Hydrothermal synthesis produces a colorful family of sodium metal phosphocarbonate materials as predicted by computation. (Bottom-right) The Na compounds are ion exchanged to form their Li analogues, and predicted battery properties are confirmed.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/1/10.1063/1.4812323
2013-07-18
2014-04-25

Abstract

Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials , and provide researchers with new avenues for cost-effective, data-driven materials design.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/1/1.4812323.html;jsessionid=o88tbio8i25j.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/1/10.1063/1.4812323&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/1/10.1063/1.4812323
10.1063/1.4812323
SEARCH_EXPAND_ITEM