1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi0.85Nd0.15)(Ti0.1Fe0.9)O3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/2/10.1063/1.4818002
1.
1. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, Nature Mater. 8, 229 (2009).
http://dx.doi.org/10.1038/nmat2373
2.
2. C. L. Jia, S. B. Mi, K. Urban, I. Vrejoiu, M. Alexe, and D. Hesse, Nature Mater. 7, 57 (2008).
http://dx.doi.org/10.1038/nmat2080
3.
3. M. F. Chisholm, W. D. Luo, M. P. Oxley, S. T. Pantelides, and H. N. Lee, Phys. Rev. Lett. 105, 197602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.197602
4.
4. A. B. Shah, Q. M. Ramasse, S. J. May, J. Kavich, J. G. Wen, X. Zhai, J. N. Eckstein, J. Freeland, A. Bhattacharya, and J. M. Zuo, Phys. Rev. B 82, 115112 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115112
5.
5. A. B. Shah, Q. M. Ramasse, X. F. Zhai, J. G. Wen, S. J. May, I. Petrov, A. Bhattacharya, P. Abbamonte, J. N. Eckstein, and J. M. Zuo, Adv. Mater. 22, 1156 (2010).
http://dx.doi.org/10.1002/adma.200904198
6.
6. P. Yu, J. S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C. H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y. H. Chu, D. A. Arena, C. C. Kao, L. W. Martin, and R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027201
7.
7. C. L. Jia, V. Nagarajan, J. Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, and R. Waser, Nature Mater. 6, 64 (2007).
http://dx.doi.org/10.1038/nmat1808
8.
8. H. J. Chang, S. V. Kalinin, A. N. Morozovska, M. Huijben, Y. H. Chu, P. Yu, R. Ramesh, E. A. Eliseev, G. S. Svechnikov, S. J. Pennycook, and A. Y. Borisevich, Adv. Mater. 23, 2474 (2011).
http://dx.doi.org/10.1002/adma.201004641
9.
9. G. Catalan, A. Lubk, A. H. G. Vlooswijk, E. Snoeck, C. Magen, A. Janssen, G. Rispens, G. Rijnders, D. H. A. Blank, and B. Noheda, Nature Mater. 10, 963 (2011).
http://dx.doi.org/10.1038/nmat3141
10.
10. C. T. Nelson, B. Winchester, Y. Zhang, S. J. Kim, A. Melville, C. Adamo, C. M. Folkman, S. H. Baek, C. B. Eom, D. G. Schlom, L. Q. Chen, and X. Q. Pan, Nano Lett. 11, 828 (2011).
http://dx.doi.org/10.1021/nl1041808
11.
11. J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y. H. Chu, and R. Ramesh, Phys. Rev. Lett. 107, 147602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.147602
12.
12. I. MacLaren, R. Villaurrutia, B. Schaffer, L. Houben, and A. Pelaiz-Barranco, Adv. Funct. Mater. 22, 261 (2012).
http://dx.doi.org/10.1002/adfm.201101220
13.
13. A. Y. Borisevich, A. R. Lupini, J. He, E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, P. Yu, Y. H. Chu, R. Ramesh, S. T. Pantelides, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. B 86, 140102 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.140102
14.
14. Y. M. Kim, A. Kumar, A. Hatt, A. N. Morozovska, A. Tselev, M. D. Biegalski, I. Ivanov, E. A. Eliseev, S. J. Pennycook, J. M. Rondinelli, S. V. Kalinin, and A. Y. Borisevich, Adv. Mater. 25, 2497 (2013).
http://dx.doi.org/10.1002/adma.201204584
15.
15. J. M. LeBeau, A. J. D’Alfonso, S. D. Findlay, S. Stemmer, and L. J. Allen, Phys. Rev. B 80, 174106 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.174106
16.
16. I. MacLaren, L. Q. Wang, B. Schaffer, Q. M. Ramasse, A. J. Craven, S. M. Selbach, N. A. Spaldin, S. Miao, K. Kalantari, and I. M. Reaney, Adv. Funct. Mater. 23, 683 (2013).
http://dx.doi.org/10.1002/adfm.201201835
17.
17. S. Van Aert, K. J. Batenburg, M. D. Rossell, R. Erni, and G. Van Tendeloo, Nature (London) 470, 374 (2011).
http://dx.doi.org/10.1038/nature09741
18.
18. I. MacLaren and G. Richter, Philos. Mag. 89, 169 (2009).
http://dx.doi.org/10.1080/14786430802562132
19.
19. C. Koch, Ph.D. thesis, Arizona State University, 2002.
20.
20. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science 326, 977 (2009).
http://dx.doi.org/10.1126/science.1177046
21.
21. A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B 81, 054109 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054109
22.
22. D. Kan, L. Palova, V. Anbusathaiah, C. J. Cheng, S. Fujino, V. Nagarajan, K. M. Rabe, and I. Takeuchi, Adv. Funct. Mater. 20, 1108 (2010).
http://dx.doi.org/10.1002/adfm.200902017
23.
23. A. Lubk, M. D. Rossell, J. Seidel, Q. He, S. Y. Yang, Y. H. Chu, R. Ramesh, M. J. Hytch, and E. Snoeck, Phys. Rev. Lett. 109, 047601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.047601
24.
24. S. Karimi, I. M. Reaney, I. Levin, and I. Sterianou, Appl. Phys. Lett. 94, 112903 (2009).
http://dx.doi.org/10.1063/1.3097222
25.
25. K. Kalantari, I. Sterianou, D. C. Sinclair, P. A. Bingham, J. Pokorny, and I. M. Reaney, J. Appl. Phys. 111, 064107 (2012).
http://dx.doi.org/10.1063/1.3697666
26.
26. W. Heywang, J. Mater. Sci. 6, 1214 (1971).
http://dx.doi.org/10.1007/BF00550094
27.
27. I. M. Reaney, I. MacLaren, L. Q. Wang, B. Schaffer, A. Craven, K. Kalantari, I. Sterianou, S. Karimi, and D. C. Sinclair, Appl. Phys. Lett. 100, 182902 (2012).
http://dx.doi.org/10.1063/1.4705431
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4818002 for sample preparation and microscopy experimental details, a fuller discussion of oxygen position determination with the aid of image simulations, full details of the reconstruction of the 3D structure and the calculation of the polarisation variation with position, and the final validation of the model using image simulations, as well as a full xyz model of the 3D atomic structure for viewing in a range of crystal and molecule viewers. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818002
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Scanning transmission electron microscope images and EELS maps of the APB along the [100] projection; the colour scales are shown for the false colour images and the same scale was used for both HAADF and BF images. Insets of simulated images are overlaid on the experimental images using exactly the same contrast scale. The EELS maps for individual images show the full contrast range. In the RGB overlay of the Fe (R), HAADF (G), and Ti (B) signals, the contrast has been enhanced by removing the background intensity to improve visibility of the main atomic columns in the RGB image. The red/pale blue overlay image shows simultaneously acquired HAADF (red) and BF (pale blue) signals from an area of this APB and demonstrates the relative position of cations and anions in and around the boundary.

Image of FIG. 2.

Click to view

FIG. 2.

HAADF image and EELS maps of the APB along the [010] projection, i.e., perpendicular to the projection in Fig. 1 . An inset of a simulated image is overlaid on the HAADF image using exactly the same contrast scale. The EELS maps for individual images show the full contrast range. In the RGB overlay of the Fe (R), HAADF (G), and Ti (B) signals, the contrast has been enhanced by removing the background intensity to enhance visibility of the main atomic columns in the RGB image.

Image of FIG. 3.

Click to view

FIG. 3.

Models and analysis of the APB: (a) [100] projection of the quantitative 3-dimensional structure of the APB (Fe – red, Ti – blue, Bi – purple, O – yellow); (b) The Bi-Bi plane spacing along the [001] direction as function of the distance from the boundary; (c) Local component of the polarisation in the [001], i.e., z direction as a function of distance from the boundary. The error bars in (b) and (c) were calculated from the standard deviation in the out-of-plane atomic position measurement after averaging.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/2/10.1063/1.4818002
2013-08-13
2014-04-20

Abstract

Observation of an unusual, negatively-charged antiphase boundary in (BiNd)(TiFe)O is reported. Aberration corrected scanning transmission electron microscopy is used to establish the full three dimensional structure of this boundary including O-ion positions to ∼±10 pm. The charged antiphase boundary stabilises tetragonally distorted regions with a strong polar ordering to either side of the boundary, with a characteristic length scale determined by the excess charge trapped at the boundary. Far away from the boundary the crystal relaxes into the well-known Nd-stabilised antiferroelectric phase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/2/1.4818002.html;jsessionid=e43ns7rid6fqn.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/2/10.1063/1.4818002&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi0.85Nd0.15)(Ti0.1Fe0.9)O3
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818002
10.1063/1.4818002
SEARCH_EXPAND_ITEM