1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/2/10.1063/1.4818168
1.
1. T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, and W. B. Carter, Science 334, 962965 (2011).
http://dx.doi.org/10.1126/science.1211649
2.
2. A. Torrents, T. A. Schaedler, A. J. Jacobsen, W. B. Carter, and L. Valdevit, Acta Mater. 60, 35113523 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.03.007
3.
3. A. J. Jacobsen, W. B. Carter, and S. Nutt, Adv. Mater. 19, 38923896 (2007).
http://dx.doi.org/10.1002/adma.200700797
4.
4. C. S. Roper, Int. J. Heat Fluid Flow 32(1), 239248 (2011).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.07.002
5.
5. K. J. Maloney, K. D. Fink, T. A. Schaedler, J. A. Kolodziejska, A. J. Jacobsen, and C. S. Roper, Int. J. Heat Mass Transfer 55, 24862493 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.01.011
6.
6. A. G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, Int. J. Impact Eng. 37, 947959 (2010).
http://dx.doi.org/10.1016/j.ijimpeng.2010.03.007
8.
8. L. J. Gibson and M. F. Ashby, Proc. R. Soc. London, Ser. A 382, 4359 (1982).
http://dx.doi.org/10.1098/rspa.1982.0088
9.
9. Plascore Inc. PAMG-XR1 5052 Aluminum Honeycomb, Datasheet, 2012, see http://www.plascore.com/pdf/Plascore_5052.pdf.
10.
10. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties (Cambridge University Press, 1997).
11.
11. V. S. Deshpande, N. A. Fleck, and M. F. Ashby, J. Mech. Phys. Solids 49, 1747 (2001).
http://dx.doi.org/10.1016/S0022-5096(01)00010-2
12.
12. A. G. Evans, J. W. Hutchinson, N. A. Fleck, M. F. Ashby, and H. N. G. Wadley, Prog. Mater. Sci. 46, 309 (2001).
http://dx.doi.org/10.1016/S0079-6425(00)00016-5
13.
13. L. Valdevit, S. W. Godfrey, T. A. Schaedler, A. J. Jacobson, and W. B. Carter, “Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design,” J. Mater. Res. (published online).
http://dx.doi.org/10.1557/jmr.2013.160
14.
14. J. Zou, J. Liu, A. S. Karakoti, A. Kumar, D. Joung, Q. Li, S. I. Khondaker, S. Seal, and L. Zhai, ACS Nano 4, 72937302 (2010).
http://dx.doi.org/10.1021/nn102246a
15.
15. M. Xu, D. N. Futaba, T. Yamada, M. Yumura, and K. Hata, Science 330, 1364 (2010).
http://dx.doi.org/10.1126/science.1194865
16.
16. S. B. Hutchens, A. Needleman, and J. R. Greer, J. Mech. Phys. Solids 59, 22272237 (2011).
http://dx.doi.org/10.1016/j.jmps.2011.05.002
17.
17. E. J. Kramer, Adv. Polym. Sci. 52–53, 156 (1983).
http://dx.doi.org/10.1007/BFb0024055
18.
18. S. Kumar, M. T. Alam, and M. A. Haque, J. Microelectromech. Syst. 20(1), 53 (2011).
http://dx.doi.org/10.1109/JMEMS.2010.2100033
19.
19. A. J. Jacobsen, W. B. Carter, and S. Nutt, Acta Mater. 55, 67246733 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.08.036
20.
20. J. Lian, L. Valdevit, T. A. Schaedler, A. J. Jacobsen, W. Barvosa-Carter, and J. R. Greer, Nano Lett. 11, 4118 (2011).
http://dx.doi.org/10.1021/nl202475p
21.
21. S.-Y. Chang and T.-K. Chang, J. Appl. Phys. 101, 033507 (2007).
http://dx.doi.org/10.1063/1.2432873
22.
22. J. J. Licari, Coating Materials for Electronic Applications (Noyes Publications, 2003).
23.
23. Handbook of Plastics, Elastomers and Composites (McGraw Hill, Inc., 2002), Chap. 6.
24.
24. D. Hausmann, J. Becker, S. Wang, and R. G. Gordon, Science 298, 402406 (2002).
http://dx.doi.org/10.1126/science.1073552
25.
25. B. B. Burton, M. P. Boleslawski, A. T. Desombre, and S. M. George, Chem. Mater. 20, 70317043 (2008).
http://dx.doi.org/10.1021/cm801738z
26.
26. W. D. Callister, Materials Science and Engineering: An Introduction (John Wiley and Sons, Inc., 2000).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818168
Loading
/content/aip/journal/aplmater/1/2/10.1063/1.4818168
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/2/10.1063/1.4818168
2013-08-13
2014-10-31

Abstract

Ordered periodic microlattices with densities from 0.5 mg/cm to 500 mg/cm are fabricated by depositing various thin film materials (Au, Cu, Ni, SiO, poly(CHF)) onto sacrificial polymer lattice templates. Young's modulus and strength are measured in compression and the density scaling is determined. At low relative densities, recovery from compressive strains of 50% and higher is observed, independent of lattice material. An analytical model is shown to accurately predict the transition between recoverable “pseudo-superelastic” and irrecoverable plastic deformation for all constituent materials. These materials are of interest for energy storage applications, deployable structures, and for acoustic, shock, and vibration damping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/2/1.4818168.html;jsessionid=10pvex271p472.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/2/10.1063/1.4818168&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818168
10.1063/1.4818168
SEARCH_EXPAND_ITEM