1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Contrasting behavior of the structural and magnetic properties in Mn- and Fe-doped In2O3 films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/2/10.1063/1.4818169
1.
1. S. A. Wolf, D. D. Awschalom, R. A. Ruhrman, J. M. Daughton, S. Vonon Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
3.
3. S. Bader and S. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010).
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104123
4.
4. H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Nature Mater. 3, 221 (2004).
http://dx.doi.org/10.1038/nmat1099
5.
5. A. J. Behan, A. Mokhtari, H. J. Blythe, D. S. Score, X. H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett. 100, 047206 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.047206
6.
6. C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, Phys. Rev. B 74, 115307 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.115307
7.
7. J. He, S. Xu, Y. K. Yoo, Q. Xue, H. C. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, and I. Takeuchi, Appl. Phys. Lett. 86, 052503 (2005).
http://dx.doi.org/10.1063/1.1851618
8.
8. M. Kobayashi, Y. Ishida, J. I. Hwang, G. S. Song, M. Takizawa, A. Fujimori, Y. Takeda, T. Ohkochi, T. Okane, Y. Saitoh, H. Yamagami, A. Gupta, H. T. Cao, and K. V. Rao, Phys. Rev. B 79, 205203 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205203
9.
9. J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan, and K. Paul, New J. Phys. 12, 053025 (2010).
http://dx.doi.org/10.1088/1367-2630/12/5/053025
10.
10. B. Straumal, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, G. Schütz, P. van Aken, E. Goering, and B. Baretzky, Phys. Rev. B 79, 205206 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205206
11.
11. B. Straumal, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, E. Goering, and B. Baretzky, Phys. Status Solidi B 248, 1581 (2011).
http://dx.doi.org/10.1002/pssb.201001182
12.
12. J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. LeClair, T. S. Santos, and J. S. Moodera, Nature Mater. 5, 298 (2006).
http://dx.doi.org/10.1038/nmat1613
13.
13. Y. K. Yoo, Q. Xue, H. C. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, S. Xu, J. He, Y. S. Chu, S. D. Preite, S. E. Lofland, and I. Takeuchi, Appl. Phys. Lett. 86, 042506 (2005).
http://dx.doi.org/10.1063/1.1854720
14.
14. S. Kohiki, M. Sasaki, Y. Murakawa, K. Hori, K. Okada, H. Shimooka, T. Tajiri, H. Deguchi, S. Matsushima, M. Oku, T. Shishido, M. Arai, M. Mitome, and Y. Bando, Thin Solid Films 505, 122 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.10.022
15.
15. T. Ohno, T. Kawahara, H. Tanaka, T. Kawai, M. Oku, K. Okada, and S. Kohiki, Jpn. J. Appl. Phys. 45, L957 (2006).
http://dx.doi.org/10.1143/JJAP.45.L957
16.
16. P. F. Xing, Y. X. Chen, S. S. Yan, G. L. Liu, L. M. Mei, and Z. Zhang, J. Appl. Phys. 106, 043909 (2009).
http://dx.doi.org/10.1063/1.3202287
17.
17. G. Peleckis, X. L. Wang, and S. X. Dou, IEEE Trans. Magn. 42, 2703 (2006).
http://dx.doi.org/10.1109/TMAG.2006.878846
18.
18. D. Bérardan, E. Guilmeau, and D. Pelloquin, J. Magn. Magn. Mater. 320, 983 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.10.002
19.
19. H. B. Albargi, M. J. Ying, Q. Feng, H. J. Blythe, A. M. Fox, and G. A. Gehring, “Effect of target preparation on the magnetic properties of PLD iron doped In2O3 films” (unpublished).
20.
20. F. X. Jiang, X. H. Xu, J. Zhang, X. C. Fan, H. S. Wu, M. Alshammari, Q. Feng, H. J. Blythe, D. S. Score, K. Addison, M. Al-Qahtani, and G. A. Gehring, J. Appl. Phys. 109, 053907 (2011).
http://dx.doi.org/10.1063/1.3559298
21.
21. S. Heald, M. S. Alshammari, S. Alfehaid, M. Alotaibi, Q. Feng, and A. M. H. R. Hakimi, J. Phys.: Conf. Ser. 430, 012081 (2013).
http://dx.doi.org/10.1088/1742-6596/430/1/012081
22.
22. C. Y. Park, C. Y. You, K. R. Jeon, and S. C. Shin, Appl. Phys. Lett. 100, 222409 (2012).
http://dx.doi.org/10.1063/1.4722928
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818169
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

θ–2θ XRD diffractogram focusing on the InO (222) and (400) reflection peaks for Mn- and Fe-doped InO films grown at different substrate temperatures. Displacement was applied for clarity.

Image of FIG. 2.

Click to view

FIG. 2.

weighted Fourier transforms of the EXAFS data (solid lines) along with multi-shell fits to the data (dashed lines) as described in the text. Black and red lines denote Mn-doped InO grown at 400 °C and Fe-doped InO sample grown at 600 °C, respectively. The transform range was = 2–11.5 Å and the fitting range in was 1–3.7 Å. A two-site model based on the InO bixbyite structure was used. The Mn fit included (12 ± 4)% MnO. Insets: Normalized near-edge XAFS spectra for Mn-doped InO which was grown at 400 °C and bulk MnO, and Fe-doped InO which was grown at 600 °C and different Fe-oxides.

Image of FIG. 3.

Click to view

FIG. 3.

(a) and (b) absorption coefficient at 2.3 eV for Mn- and Fe-doped samples, respectively; (c) and (d) room temperature absorption spectra for Mn- and Fe-doped InO films, grown at different substrate temperatures, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Room temperature hysteresis loops at 5 and 300 K (dashed and solid lines, respectively) for both Mn- and Fe-doped films (black and red lines, respectively), deposited at 300 and 600 °C, respectively, and (b) room temperature MCD curves as a function of photon energy for Mn- and Fe-doped InO films deposited at various temperatures.

Image of FIG. 5.

Click to view

FIG. 5.

The variation of room temperature saturation magnetization, (black squares), MCD measured at 3.3 eV (red circles), and grain size, (triangles) in the insets, as a function of the substrate temperature ranging from 300 to 600 °C for InO thin films doped with (5 at.%) (a) Mn and (b) Fe.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/2/10.1063/1.4818169
2013-08-13
2014-04-19

Abstract

We have observed room temperature ferromagnetism in InO thin films doped with either 5 at.% Mn or Fe, prepared by pulsed laser deposition at substrate temperatures ranging from 300 to 600 °C. The dependence of saturation magnetization on grain size was investigated for both types of InO films. It is revealed that, for the Mn-doped films, the magnetization was largest with small grains, indicating the importance of grain boundaries. In contrast, for Fe-doped films, the largest magnetization was observed with large grains.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/2/1.4818169.html;jsessionid=1p19ilkaq17b4.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/2/10.1063/1.4818169&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Contrasting behavior of the structural and magnetic properties in Mn- and Fe-doped In2O3 films
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818169
10.1063/1.4818169
SEARCH_EXPAND_ITEM