NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Ni and A. G. Khachaturyan, Nature Mater. 8, 410414 (2009).
2. P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, and L. Hultman, Appl. Phys. Lett. 83, 2049 (2003).
3. D. Holec, R. Rachbauer, L. Chen, L. Wang, D. Luefa, and P. H. Mayrhofer, Surf. Coat. Technol. 206, 16981704 (2011).
4. B. Alling, A. Karimi, and I. Abrikosov, Surf. Coat. Technol. 203, 883886 (2008).
5. L. J. S. Johnson, M. Thuvander, K. Stiller, M. Odén, and L. Hultman, Thin Solid Films 520, 43624368 (2012).
6. F. Adibi, I. Petrov, L. Hultman, U. Wahlström, T. Shimizu, D. McIntyre, J. E. Greene, and J.-E. Sundgren, J. Appl. Phys. 69(9), 64376450 (1991).
7. L. Rogström, M. P. Johansson, N. Ghafoor, L. Hultman, and M. Odén, J. Vac. Sci. Technol. A30, 031504 (2012).
8. J. W. Cahn, Acta Metall. 10, 179183 (1962).
9. M. Seul and D. Andelman, Science 267, 476483 (1995).
10. C. Höglund, B. Alling, J. Birch, M. Beckers, P. O. Å. Persson, C. Baehtz, Z. Czigány, J. Jensen, and L. Hultman, Phys. Rev. B 81, 224101 (2010).
11. R. Plass, A. J. Last, N. C. Bartelt, and G. L. Kellogg, Nature (London) 412, 875 (2001).
12. R. Plass, N. C. Bartelt, and G. L. Kellogg, J. Phys.: Condens. Matter 14, 42274240 (2002).
13. V. I. Marchenko, JETP Lett. 33, 381383 (1981).
14. O. L. Alerhand, D. Vanderbilt, R. D. Meade, and J. D. Joannopoulos, Phys. Rev. Lett. 61, 19731976 (1988).
15. F. Tasnádi, I. A. Abrikosov, L. Rogström, J. Almer, M. P. Johansson, and M. Odén, Appl. Phys. Lett. 97, 231902 (2010).
16. T. Volkmann, F. Much, M. Biehl, and M. Kotrla, Surf. Sci. 586, 157173 (2005).
17. F. Eriksson, N. Ghafoor, F. Schäfers, E. M. Gullikson, S. Aouadi, S. Rohde, L. Hultman, and J. Birch, Appl. Opt. 47(23), 41964204 (2008).

Data & Media loading...


Article metrics loading...



Self-organization on the nanometer scale is a trend in materials research. Thermodynamic driving forces may, for example, yield chessboard patterns in metal alloys [Y. Ni and A. G. Khachaturyan, Nature Mater.8, 410–414 (Year: 2009)]10.1038/nmat2431 or nitrides [P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, and C. Mitterer, Appl. Phys. Lett.83, 2049 (Year: 2003)]10.1063/1.1608464 during spinodal decomposition. Here, we explore the ZrN-AlN system, which has one of the largest positive enthalpies of mixing among the transition metal aluminum nitrides[D. Holec, R. Rachbauer, L. Chen, L. Wang, D. Luefa, and P. H. Mayrhofer, Surf. Coat. Technol.206, 1698–1704 (Year: 2011)10.1016/j.surfcoat.2011.09.019; B. Alling, A. Karimi, and I. Abrikosov, Surf. Coat. Technol.203, 883–886 (Year: 2008)]10.1016/j.surfcoat.2008.08.027. Surprisingly, a highly regular superhard (36 GPa) two-dimensional nanolabyrinthine structure of two intergrown single crystal phases evolves during magnetron sputter thin film synthesis of Zr Al N/MgO(001). The self-organization is surface driven and the synergistic result of kinetic limitations, where the enthalpy reduction balances both investments in interfacial and elastic energies.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanolabyrinthine ZrAlN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases