1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Nanolabyrinthine ZrAlN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/2/10.1063/1.4818170
1.
1. Y. Ni and A. G. Khachaturyan, Nature Mater. 8, 410414 (2009).
http://dx.doi.org/10.1038/nmat2431
2.
2. P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, and L. Hultman, Appl. Phys. Lett. 83, 2049 (2003).
http://dx.doi.org/10.1063/1.1608464
3.
3. D. Holec, R. Rachbauer, L. Chen, L. Wang, D. Luefa, and P. H. Mayrhofer, Surf. Coat. Technol. 206, 16981704 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.09.019
4.
4. B. Alling, A. Karimi, and I. Abrikosov, Surf. Coat. Technol. 203, 883886 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.08.027
5.
5. L. J. S. Johnson, M. Thuvander, K. Stiller, M. Odén, and L. Hultman, Thin Solid Films 520, 43624368 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.02.085
6.
6. F. Adibi, I. Petrov, L. Hultman, U. Wahlström, T. Shimizu, D. McIntyre, J. E. Greene, and J.-E. Sundgren, J. Appl. Phys. 69(9), 64376450 (1991).
http://dx.doi.org/10.1063/1.348849
7.
7. L. Rogström, M. P. Johansson, N. Ghafoor, L. Hultman, and M. Odén, J. Vac. Sci. Technol. A30, 031504 (2012).
8.
8. J. W. Cahn, Acta Metall. 10, 179183 (1962).
http://dx.doi.org/10.1016/0001-6160(62)90114-1
9.
9. M. Seul and D. Andelman, Science 267, 476483 (1995).
http://dx.doi.org/10.1126/science.267.5197.476
10.
10. C. Höglund, B. Alling, J. Birch, M. Beckers, P. O. Å. Persson, C. Baehtz, Z. Czigány, J. Jensen, and L. Hultman, Phys. Rev. B 81, 224101 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.224101
11.
11. R. Plass, A. J. Last, N. C. Bartelt, and G. L. Kellogg, Nature (London) 412, 875 (2001).
http://dx.doi.org/10.1038/35091143
12.
12. R. Plass, N. C. Bartelt, and G. L. Kellogg, J. Phys.: Condens. Matter 14, 42274240 (2002).
http://dx.doi.org/10.1088/0953-8984/14/16/313
13.
13. V. I. Marchenko, JETP Lett. 33, 381383 (1981).
14.
14. O. L. Alerhand, D. Vanderbilt, R. D. Meade, and J. D. Joannopoulos, Phys. Rev. Lett. 61, 19731976 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1973
15.
15. F. Tasnádi, I. A. Abrikosov, L. Rogström, J. Almer, M. P. Johansson, and M. Odén, Appl. Phys. Lett. 97, 231902 (2010).
http://dx.doi.org/10.1063/1.3524502
16.
16. T. Volkmann, F. Much, M. Biehl, and M. Kotrla, Surf. Sci. 586, 157173 (2005).
http://dx.doi.org/10.1016/j.susc.2005.05.010
17.
17. F. Eriksson, N. Ghafoor, F. Schäfers, E. M. Gullikson, S. Aouadi, S. Rohde, L. Hultman, and J. Birch, Appl. Opt. 47(23), 41964204 (2008).
http://dx.doi.org/10.1364/AO.47.004196
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818170
Loading
/content/aip/journal/aplmater/1/2/10.1063/1.4818170
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/2/10.1063/1.4818170
2013-08-12
2014-10-25

Abstract

Self-organization on the nanometer scale is a trend in materials research. Thermodynamic driving forces may, for example, yield chessboard patterns in metal alloys [Y. Ni and A. G. Khachaturyan, Nature Mater.8, 410–414 (Year: 2009)]10.1038/nmat2431 or nitrides [P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, and C. Mitterer, Appl. Phys. Lett.83, 2049 (Year: 2003)]10.1063/1.1608464 during spinodal decomposition. Here, we explore the ZrN-AlN system, which has one of the largest positive enthalpies of mixing among the transition metal aluminum nitrides[D. Holec, R. Rachbauer, L. Chen, L. Wang, D. Luefa, and P. H. Mayrhofer, Surf. Coat. Technol.206, 1698–1704 (Year: 2011)10.1016/j.surfcoat.2011.09.019; B. Alling, A. Karimi, and I. Abrikosov, Surf. Coat. Technol.203, 883–886 (Year: 2008)]10.1016/j.surfcoat.2008.08.027. Surprisingly, a highly regular superhard (36 GPa) two-dimensional nanolabyrinthine structure of two intergrown single crystal phases evolves during magnetron sputter thin film synthesis of Zr Al N/MgO(001). The self-organization is surface driven and the synergistic result of kinetic limitations, where the enthalpy reduction balances both investments in interfacial and elastic energies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/2/1.4818170.html;jsessionid=1olwpnx9ak4q2.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/2/10.1063/1.4818170&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanolabyrinthine ZrAlN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818170
10.1063/1.4818170
SEARCH_EXPAND_ITEM