1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Ti-catalyzed HfSiO4 formation in HfTiO4 films on SiO2 studied by Z-contrast scanning electron microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/2/10.1063/1.4818171
1.
1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
2.
2. A. Paskaleva, A. J. Bauer, M. Lemberger, and S. Zürcher, J. Appl. Phys. 95, 5583 (2004).
http://dx.doi.org/10.1063/1.1702101
3.
3. M. C. Cisneros-Morales and C. R. Aita, J. Appl. Phys. 108, 123506 (2010).
http://dx.doi.org/10.1063/1.3520678
4.
4. D. Muñoz Ramo, A. L. Shluger, and G. Bersuker, Phys. Rev. B 79, 035306 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035306
5.
5. A. Paskaleva, M. Lemberger, E. Atanassova, and A. J. Bauer, J. Vac. Sci. Technol. B 29, 01AA03 (2011).
http://dx.doi.org/10.1116/1.3521501
6.
6. M. C. Cisneros-Morales and C. R. Aita, J. Vac. Sci. Technol. A 28, 1161 (2010).
http://dx.doi.org/10.1116/1.3474973
7.
7. M. C. Cisneros-Morales and C. R. Aita, Appl. Phys. Lett. 98, 051909 (2011).
http://dx.doi.org/10.1063/1.3551543
8.
8. M. C. Cisneros-Morales and C. R. Aita, J. Appl. Phys. 111, 109904 (2012).
http://dx.doi.org/10.1063/1.4719968
9.
9. M. C. Cisneros-Morales and C. R. Aita, Appl. Phys. Lett. 96, 191904 (2010).
http://dx.doi.org/10.1063/1.3428965
10.
10. M. C. Cisneros-Morales and C. R. Aita, J. Appl. Phys. 109, 123523 (2011).
http://dx.doi.org/10.1063/1.3597321
11.
11.Joint Commission on Powder Diffraction Standards Card No. 78-0050.
12.
12.Joint Commission on Powder Diffraction Standards Card No. 73-1765.
13.
13.Joint Commission on Powder Diffraction Standards Card No. 40-0794.
14.
14. J. Fuhrmann and J. Pickardt, Z. Anorg. Allg. Chem. 532, 171 (1986).
http://dx.doi.org/10.1002/zaac.19865320123
15.
15. A. Jayaraman, S. Y. Wang, S. K. Sharma, and L. C. Ming, Phys. Rev. B 48, 9205 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.9205
16.
16. S. P. S. Porto, P. A. Fleury, and T. C. Damen, Phys. Rev. 154, 522 (1967).
http://dx.doi.org/10.1103/PhysRev.154.522
17.
17. M. A. Krebs and R. A. Condrate Sr., J. Mater. Sci. Lett. 7, 1327 (1988).
http://dx.doi.org/10.1007/BF00719973
18.
18. J. H. Nicola and H. N. Rutt, J. Phys. C 7, 1381 (1974).
http://dx.doi.org/10.1088/0022-3719/7/7/029
19.
19. J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Saywer, and J. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer Science and Business Media, New York, 2003).
20.
20. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Wiley, New York, 1995), subsection 4.2.1, available at http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_2/4_2_1.html.
21.
21. R. W. Lynch and B. Morosin, J. Am. Ceram. Soc. 55, 409 (1972).
http://dx.doi.org/10.1111/j.1151-2916.1972.tb11323.x
22.
22. S. Q. Wang and J. W. Mayer, J. Appl. Phys. 67, 2932 (1990).
http://dx.doi.org/10.1063/1.345412
23.
23. D. Brassard and M. A. El Khakani, J. Appl. Phys. 98, 054912 (2005).
http://dx.doi.org/10.1063/1.2039274
24.
24. D. Brassard and M. A. El Khakani, J. Appl. Phys. 103, 114110 (2008).
http://dx.doi.org/10.1063/1.2937241
25.
25. G.-M. Rignanese, X. Rocquefelte, X. Gonze, and A. Pasquarello, Int. J. Quantum Chem. 101, 793 (2005);
http://dx.doi.org/10.1002/qua.20339
25.G.-M. Rignanese, X. Rocquefelte, X. Gonze, and A. Pasquarello, Int. J. Quantum Chem. 103, 354 (2005) (Erratum).
http://dx.doi.org/10.1002/qua.20643
26.
26. G.-M. Rignanese, J. Phys.: Condens. Matter 17, R357 (2005).
http://dx.doi.org/10.1088/0953-8984/17/7/R03
27.
27. L. Gracia, A. Beltrán, and D. Errandonea, Phys. Rev. B 80, 094105 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.094105
28.
28. D. J. Cherniak and E. B. Watson, Chem. Geol. 242, 470 (2007). This reference discusses the structural strains associated with Ti substitution on a Zr site in zircon, ZrSiO4, a sister material to HfSiO4.
http://dx.doi.org/10.1016/j.chemgeo.2007.05.005
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818171
Loading
/content/aip/journal/aplmater/1/2/10.1063/1.4818171
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/2/10.1063/1.4818171
2013-08-13
2014-09-16

Abstract

Hafnon (HfSiO) as it is initially formed in a partially demixed film of hafnium titanate (HfTiO) on fused SiO is studied by atomic number (Z) contrast high resolution scanning electron microscopy, x-ray diffraction, and Raman spectroscopy and microscopy. The results show exsoluted Ti is the catalyst for hafnon formation by a two-step reaction. Ti first reacts with SiO to produce a glassy Ti-silicate. Ti is then replaced by Hf in the silicate to produce HfSiO. The results suggest this behavior is prototypical of other Ti-bearing ternary or higher order oxide films on SiO when film thermal instability involves Ti exsolution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/2/1.4818171.html;jsessionid=1w7rlvratwrp6.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/2/10.1063/1.4818171&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ti-catalyzed HfSiO4 formation in HfTiO4 films on SiO2 studied by Z-contrast scanning electron microscopy
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818171
10.1063/1.4818171
SEARCH_EXPAND_ITEM