Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/2/10.1063/1.4818358
1.
1. J. M. García, J. P. Silveira, and F. Briones, Appl. Phys. Lett. 77, 409 (2000).
http://dx.doi.org/10.1063/1.126992
2.
2. D. J. Bottomley, Appl. Phys. Lett. 80, 4747 (2002).
http://dx.doi.org/10.1063/1.1489704
3.
3. J. Tersoff, Phys. Rev. Lett. 81, 3183 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3183
4.
4. H. M. Koduvely and A. Zangwill, Phys. Rev. B 60, R2204 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R2204
5.
5. P. Joyce, T. Krzyzewski, G. Bell, T. Jones, S. Malik, D. Childs, and R. Murray, Phys. Rev. B 62, 10891 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10891
6.
6. E. Placidi, F. Arciprete, M. Fanfoni, F. Patella, and A. Balzarotti, in Self-Assembled Quantum Dots, Lecture Notes in Nanoscale Science and Technology Vol. 1, edited by Z. Wang (Springer, New York, 2008), pp. 123.
7.
7. J. He, H. J. Krenner, C. Pryor, J. P. Zhang, Y. Wu, D. G. Allen, C. M. Morris, M. S. Sherwin, and P. M. Petroff, Nano Lett. 7, 802 (2007).
http://dx.doi.org/10.1021/nl070132r
8.
8. L. Li, G. Patriarche, M. Rossetti, and A. Fiore, J. Appl. Phys. 102, 033502 (2007).
http://dx.doi.org/10.1063/1.2764212
9.
9. H. J. Krenner, C. E. Pryor, J. He, and P. M. Petroff, Nano Lett. 8, 1750 (2008).
http://dx.doi.org/10.1021/nl800911n
10.
10. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, Phys. Rev. B 69, 235332 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.235332
11.
11. D. Alonso-Álvarez, B. Alén, J. M. Ripalda, J. Llorens, A. G. Taboada, Y. González, L. González, F. Briones, M. A. Roldán, J. Hernández-Saz, M. Herrera, and S. I. Molina, Appl. Phys. Lett. 98, 173106 (2011).
http://dx.doi.org/10.1063/1.3583455
12.
12. J. He, R. Nötzel, P. Offermans, P. M. Koenraad, Q. Gong, G. J. Hamhuis, T. J. Eijkemans, and J. H. Wolter, Appl. Phys. Lett. 85, 2771 (2004).
http://dx.doi.org/10.1063/1.1801172
13.
13. D. Alonso-Álvarez, J. M. Ripalda, B. Alén, J. M. Llorens, A. Rivera, and F. Briones, Adv. Mater. 23, 5256 (2011).
http://dx.doi.org/10.1002/adma.201101639
14.
14.See supplementary material at http://dx.doi.org/10.1063/1.4818358 for more information about the implementation and theory of the MOSS technique and for further details about the simulation and modelling of the MOSS curve. [Supplementary Material]
15.
15. M. U. González, L. González, J. M. García, Y. González, J. P. Silveira, and F. Briones, Microelectron. J. 35, 13 (2004).
http://dx.doi.org/10.1016/S0026-2692(03)00213-1
16.
16. D. Fuster, M. Ujúe González, L. González, Y. González, T. Ben, A. Ponce, and S. I. Molina, Appl. Phys. Lett. 84, 4723 (2004).
http://dx.doi.org/10.1063/1.1759374
17.
17. J. Silveira, J. Garcia, and F. Briones, J. Cryst. Growth 227, 995 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00966-6
18.
18. D. J. Bottomley, Appl. Phys. Lett. 72, 783 (1998).
http://dx.doi.org/10.1063/1.120892
19.
19. V. A. Shchukin, D. Bimberg, E. Schöll, P. Kratzer, and M. Scheffler, “Thermodynamics and kinetics of quantum dot growth,” Semiconductor Nanostructures (Springer, 2008), pp. 139.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/2/10.1063/1.4818358
Loading
/content/aip/journal/aplmater/1/2/10.1063/1.4818358
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/2/10.1063/1.4818358
2013-08-26
2016-12-10

Abstract

Using the mechano-optical stress sensor technique, we observe a counter-intuitive reduction of the compressive stress when InAs is deposited on GaAs (001) during the growth of quantum posts. Through modelling of the strain fields, we find that such anomalous behaviour can be related to the strain-driven detachment of In atoms from the crystal and their surface diffusion towards the self-assembled nanostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/2/1.4818358.html;jsessionid=4YYyptn8hDoOtgwkqJCXJFZN.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/2/10.1063/1.4818358&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/1/2/10.1063/1.4818358&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/1/2/10.1063/1.4818358'
Top,Right1,Right2,Right3,