Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. A. De Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
2. K. Yoshihara, S. Fujii, H. Kawai, K. Ishida, S. I. Honda, and M. Katayama, Appl. Phys. Lett. 91, 113109 (2007).
3. A. Pandey, A. Prasad, J. P. Moscatello, and Y. K. Yap, ACS Nano 4, 6760 (2010).
4. R. Yuge, J. Miyawaki, T. Ichihashi, S. Kuroshima, T. Yoshitake, T. Ohkawa, Y. Aoki, S. Iijima, and M. Yudasaka, ACS Nano 4, 7337 (2010).
5. A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S. D. Shandakov, G. Lolli, D. E. Resasco, M. Choi, D. Tomanek, and E. I. Kauppinen, Nat. Nanotechnol. 2, 156 (2007).
6. S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Appl. Phys. Lett. 83, 4661 (2003).
7. T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, J. Am. Chem. Soc. 128, 13338 (2006).
8. D. N. Futaba, H. Kimura, B. Zhao, T. Yamada, H. Kurachi, S. Uemura, and K. Hata, Carbon 50, 2796 (2012).
9. C. Li, Y. Zhang, M. Mann, D. Hasko, W. Lei, B. P. Wang, D. P. Chu, D. Pribat, G. A. J. Amaratunga, and W. I. Milne, Appl. Phys. Lett. 97, 113107 (2010).
10. J. Lee, Y. Jung, J. Song, J. S. Kim, G. W. Lee, H. J. Jeong, and Y. Jeong, Carbon 50, 3889 (2012).
11. M. Xu, D. N. Futaba, M. Yumura, and K. Hata, Acs Nano 6, 5837 (2012).
12. B. Zhao, D. N. Futaba, S. Yasuda, M. Akoshima, T. Yamada, and K. Hata, ACS Nano 3, 108 (2009).
13. P. Liu, L. Liu, Y. Wei, L. M. Shen, and S. S. Fan, Appl. Phys. Lett. 89, 073101 (2006).
14. J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, Appl. Phys. Lett. 80, 2392 (2002).
15. A. Pandey, A. Prasad, J. P. Moscatello, M. Engelhard, C. M. Wang, and Y. K. Yap, ACS Nano 7, 117 (2013).
16. N. Perea-Lopez, B. Rebollo-Plata, J. A. Briones-Leon, A. Morelos-Gomez, D. Hernandez-Cruz, G. A. Hirata, V. Meunier, A. R. Botello-Mendez, J. Charlier, B. Maruyama, E. Munoz-Sandoval, F. Lopez-Urias, M. Terrones, and H. Terrones, ACS Nano 5, 5072 (2011).
17. J. M. Bonard, N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern, and A. Chatelain, Adv. Mater. 13, 184 (2001).<184::AID-ADMA184>3.0.CO;2-I
18. Y. Shiratori, K. Furiichi, S. Noda, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi, Jpn. J. Appl. Phys. 47, 4780 (2008).
19. S. Neupane, M. Lastres, M. Chiarellaa, W. Z. Li, Q. M. Su, and G. H. Du, Carbon 50, 2641 (2012).
20.See supplementary material at for TEM images of the laterally-grown CNTs within honeycomb holes. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Laterally aligned carbon nanotube (CNT) arrays “blossomed” homogeneously in honeycomb holes of a metal grid substrate were explored as rational architecture for field emission. A low turn-on field (TOF) of 1.09 V/μm for 10 μA/cm emission was achieved, which approaches or exceeds the lowest reported TOF values for field emitter arrays. We interpret that these lateral CNT arrays act as source of CNT “loop” arrays enabling a structure suited toward low TOF field emission.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd