Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/3/10.1063/1.4820422
1.
1. W. A. De Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
http://dx.doi.org/10.1126/science.270.5239.1179
2.
2. K. Yoshihara, S. Fujii, H. Kawai, K. Ishida, S. I. Honda, and M. Katayama, Appl. Phys. Lett. 91, 113109 (2007).
http://dx.doi.org/10.1063/1.2784194
3.
3. A. Pandey, A. Prasad, J. P. Moscatello, and Y. K. Yap, ACS Nano 4, 6760 (2010).
http://dx.doi.org/10.1021/nn100925g
4.
4. R. Yuge, J. Miyawaki, T. Ichihashi, S. Kuroshima, T. Yoshitake, T. Ohkawa, Y. Aoki, S. Iijima, and M. Yudasaka, ACS Nano 4, 7337 (2010).
http://dx.doi.org/10.1021/nn102452q
5.
5. A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S. D. Shandakov, G. Lolli, D. E. Resasco, M. Choi, D. Tomanek, and E. I. Kauppinen, Nat. Nanotechnol. 2, 156 (2007).
http://dx.doi.org/10.1038/nnano.2007.37
6.
6. S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Appl. Phys. Lett. 83, 4661 (2003).
http://dx.doi.org/10.1063/1.1630167
7.
7. T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, J. Am. Chem. Soc. 128, 13338 (2006).
http://dx.doi.org/10.1021/ja0643772
8.
8. D. N. Futaba, H. Kimura, B. Zhao, T. Yamada, H. Kurachi, S. Uemura, and K. Hata, Carbon 50, 2796 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.02.043
9.
9. C. Li, Y. Zhang, M. Mann, D. Hasko, W. Lei, B. P. Wang, D. P. Chu, D. Pribat, G. A. J. Amaratunga, and W. I. Milne, Appl. Phys. Lett. 97, 113107 (2010).
http://dx.doi.org/10.1063/1.3490651
10.
10. J. Lee, Y. Jung, J. Song, J. S. Kim, G. W. Lee, H. J. Jeong, and Y. Jeong, Carbon 50, 3889 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.04.033
11.
11. M. Xu, D. N. Futaba, M. Yumura, and K. Hata, Acs Nano 6, 5837 (2012).
http://dx.doi.org/10.1021/nn300142j
12.
12. B. Zhao, D. N. Futaba, S. Yasuda, M. Akoshima, T. Yamada, and K. Hata, ACS Nano 3, 108 (2009).
http://dx.doi.org/10.1021/nn800648a
13.
13. P. Liu, L. Liu, Y. Wei, L. M. Shen, and S. S. Fan, Appl. Phys. Lett. 89, 073101 (2006).
http://dx.doi.org/10.1063/1.2336205
14.
14. J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, Appl. Phys. Lett. 80, 2392 (2002).
http://dx.doi.org/10.1063/1.1465109
15.
15. A. Pandey, A. Prasad, J. P. Moscatello, M. Engelhard, C. M. Wang, and Y. K. Yap, ACS Nano 7, 117 (2013).
http://dx.doi.org/10.1021/nn303351g
16.
16. N. Perea-Lopez, B. Rebollo-Plata, J. A. Briones-Leon, A. Morelos-Gomez, D. Hernandez-Cruz, G. A. Hirata, V. Meunier, A. R. Botello-Mendez, J. Charlier, B. Maruyama, E. Munoz-Sandoval, F. Lopez-Urias, M. Terrones, and H. Terrones, ACS Nano 5, 5072 (2011).
http://dx.doi.org/10.1021/nn201149y
17.
17. J. M. Bonard, N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern, and A. Chatelain, Adv. Mater. 13, 184 (2001).
http://dx.doi.org/10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO;2-I
18.
18. Y. Shiratori, K. Furiichi, S. Noda, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi, Jpn. J. Appl. Phys. 47, 4780 (2008).
http://dx.doi.org/10.1143/JJAP.47.4780
19.
19. S. Neupane, M. Lastres, M. Chiarellaa, W. Z. Li, Q. M. Su, and G. H. Du, Carbon 50, 2641 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.02.024
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.4820422 for TEM images of the laterally-grown CNTs within honeycomb holes. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4820422
Loading
/content/aip/journal/aplmater/1/3/10.1063/1.4820422
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/3/10.1063/1.4820422
2013-09-04
2016-12-08

Abstract

Laterally aligned carbon nanotube (CNT) arrays “blossomed” homogeneously in honeycomb holes of a metal grid substrate were explored as rational architecture for field emission. A low turn-on field (TOF) of 1.09 V/μm for 10 μA/cm emission was achieved, which approaches or exceeds the lowest reported TOF values for field emitter arrays. We interpret that these lateral CNT arrays act as source of CNT “loop” arrays enabling a structure suited toward low TOF field emission.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/3/1.4820422.html;jsessionid=CQSfkUQxzq5wknUPzrt_C0Ne.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/3/10.1063/1.4820422&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/1/3/10.1063/1.4820422&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/1/3/10.1063/1.4820422'
Top,Right1,Right2,Right3,