Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/3/10.1063/1.4820423
1.
1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
2.
2. R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, and F. Zamora, Nanoscale 3, 20 (2011).
http://dx.doi.org/10.1039/c0nr00323a
3.
3. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
4.
4. A. Geim and K. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
5.
5. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
6.
6. P. K. Ang, W. Chen, A. T. S. Wee, and K. P. Loh, J. Am. Chem. Soc. 130, 14392 (2008).
http://dx.doi.org/10.1021/ja805090z
7.
7. Y.-W. Son, M. Cohen, and S. Louie, Phys. Rev. Lett. 98, 089901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.089901
8.
8. M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
9.
9. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London) 459, 820 (2009).
http://dx.doi.org/10.1038/nature08105
10.
10. G. Giovannetti, P. Khomyakov, G. Brocks, P. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073103
11.
11. J. K. Ellis, M. J. Lucero, and G. E. Scuseria, Appl. Phys. Lett. 99, 261908 (2011).
http://dx.doi.org/10.1063/1.3672219
12.
12. S. Han, H. Kwon, S. Kim, S. Ryu, W. Yun, D. Kim, J. Hwang, J. S. Kang, J. Baik, H. Shin, and S. Hong, Phys. Rev. B 84, 045409 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045409
13.
13. B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
http://dx.doi.org/10.1021/nn203715c
14.
14. F. Schwierz, Nat. Nanotechnol. 6, 135 (2011).
http://dx.doi.org/10.1038/nnano.2011.26
15.
15. Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett. 12, 1136 (2012).
http://dx.doi.org/10.1021/nl2021575
16.
16. H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, Small Weinheim an Der Bergstrasse Germany 8, 63 (2012).
http://dx.doi.org/10.1002/smll.201101016
17.
17. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
18.
18. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6, 74 (2012).
http://dx.doi.org/10.1021/nn2024557
19.
19. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).
http://dx.doi.org/10.1021/nl201874w
20.
20. M. B. P. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, and M. Paranjape, Sci. Rep. 3, 1634 (2013).
http://dx.doi.org/10.1038/srep01634
21.
21. L. Liu, S. B. Kumar, Y. Ouyang, and J. Guo, IEEE Trans. Electron Devices 58, 3042 (2011).
http://dx.doi.org/10.1109/TED.2011.2159221
22.
22. Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11, 3768 (2011).
http://dx.doi.org/10.1021/nl2018178
23.
23. L. S. Byskov, M. Bollinger, J. K. Nørskov, B. S. Clausen, and H. Topsøe, J. Mol. Catal. A: Chem. 163, 117 (2000).
http://dx.doi.org/10.1016/S1381-1169(00)00404-0
24.
24. A. O. Neill, U. Khan, and J. N. Coleman, Chem. Mater. 24, 2414 (2012).
http://dx.doi.org/10.1021/cm301515z
25.
25. Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen, and J. Y. Lee, J. Mater. Chem. A 1, 2202 (2013).
http://dx.doi.org/10.1039/c2ta00598k
26.
26. K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, Nano Lett. 12, 1538 (2012).
http://dx.doi.org/10.1021/nl2043612
27.
27. A. Castellanos-Gomez, M. Barkelid, A. M. Goossens, V. E. Calado, H. S. J. Van Der Zant, and G. A. Steele, Nano Lett. 12, 3187 (2012).
http://dx.doi.org/10.1021/nl301164v
28.
28. Y. Shi, W. Zhou, A. Lu, W. Fang, Y. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. Li, J. Idrobo, and J. Kong, Nano Lett. 12, 2784 (2012).
http://dx.doi.org/10.1021/nl204562j
29.
29. T. Kurkina, S. Sundaram, R. S. Sundaram, F. Re, M. Masserini, K. Kern, and K. Balasubramanian, ACS Nano 6, 5514 (2012).
http://dx.doi.org/10.1021/nn301429k
30.
30. B. R. Burg and D. Poulikakos, J. Mater. Res. 26, 1561 (2011).
http://dx.doi.org/10.1557/jmr.2011.186
31.
31. F. R. Gamble, J. H. Osiecki, M. Cais, R. Pisharody, F. J. Disalvo, and T. H. Geballe, Science 174, 493 (1971).
http://dx.doi.org/10.1126/science.174.4008.493
32.
32. W. M. Divigalpitiya, R. F. Frindt, and S. R. Morrison, Science 246, 369 (1989).
http://dx.doi.org/10.1126/science.246.4928.369
33.
33. J. P. Lemmon and M. M. Lerner, Chem. Mater. 6, 207 (1994).
http://dx.doi.org/10.1021/cm00038a018
34.
34. M. N. Tahir, N. Zink, M. Eberhardt, H. A. Therese, U. Kolb, P. Theato, and W. Tremel, Angew. Chem., Int. Ed. 45, 4809 (2006).
http://dx.doi.org/10.1002/anie.200504211
35.
35. G. G. Ruiz-Hitzky Eduardo, J. Ricardo, C. Blanca, M. Victor, and S. A. Angelica, Adv. Mater. 5, 738 (1993).
http://dx.doi.org/10.1002/adma.19930051011
36.
36. E. Benavente, M. A. S. Ana, F. Mendiza, and G. Gonza, Coord. Chem. Rev. 224, 87 (2002).
http://dx.doi.org/10.1016/S0010-8545(01)00392-7
37.
37. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, Adv. Mater. 23, 3944 (2011).
http://dx.doi.org/10.1002/adma.201102584
38.
38. V. Sanchez, E. Benavente, M. A. S. Ana, and G. Gonzalez, Chem. Mater. 11, 2296 (1999).
http://dx.doi.org/10.1021/cm9900711
39.
39. G. Gonzáleza, A. M. A. Santa, and E. Benavente, Electrochim. Acta 43, 1327 (1998).
http://dx.doi.org/10.1016/S0013-4686(97)10038-X
40.
40. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 331, 568 (2011).
http://dx.doi.org/10.1126/science.1194975
41.
41. K. E. Dungey, M. D. Curtis, and J. E. Penner-hahn, Chem. Mater. 10, 2152 (1998).
http://dx.doi.org/10.1021/cm980034u
42.
42.See supplementary material at http://dx.doi.org/10.1063/1.4820423 for the chemical exfoliation of MoS2 flakes in other solvents, methods for structural characterization, details of dielectrophoretic deposition over different substrates and methods for device charcaterization. [Supplementary Material]
43.
43. A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund Jr., and K. I. Bolotin, Solid State Commun. 155, 49 (2013).
http://dx.doi.org/10.1016/j.ssc.2012.11.010
44.
44. R. Coehoorn, C. Haas, J. Dijkstra, and C. J. F. Flipse, Phys. Rev. B 35, 6195 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.6195
45.
45. Y. Fong and M. Schlüter, Electrons and Phonons in Layered Crystal Structures (Reidel, Dordrecht, 1979), p. 145.
46.
46. A. Molina-Sanchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, Phys. Rev. B 88, 045412 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.045412
47.
47. K. Lee, H.-Y. Kim, M. Lotya, J. N. Coleman, G.-T. Kim, and G. S. Duesberg, Adv. Mater. 23, 4178 (2011).
http://dx.doi.org/10.1002/adma.201101013
48.
48. S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, Nano Lett. 10, 92 (2010).
http://dx.doi.org/10.1021/nl9028736
49.
49. M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2010).
http://dx.doi.org/10.1021/cr900070d
50.
50. R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, Nature (London) 434, 1085 (2005).
http://dx.doi.org/10.1038/4341085a
51.
51. V. Pachauri, K. Kern, and K. Balasubramanian, Appl. Phys. Lett. 102, 023501 (2013).
http://dx.doi.org/10.1063/1.4775579
52.
52. A. Ortiz-Konde, F. J. Garcia Sanchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, Microelectron. Reliab. 42, 583 (2002).
http://dx.doi.org/10.1016/S0026-2714(02)00027-6
53.
53. S. M. Sze and K. K. Nag, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2007).
54.
54. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, Nat. Nanotechnol. 3, 486 (2008).
http://dx.doi.org/10.1038/nnano.2008.172
55.
55. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, Nano Lett. 9, 1742 (2009).
http://dx.doi.org/10.1021/nl8029493
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4820423
Loading
/content/aip/journal/aplmater/1/3/10.1063/1.4820423
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/3/10.1063/1.4820423
2013-09-04
2016-12-09

Abstract

A solution-based exfoliation method for obtaining large-area two-dimensional flakes of molybdenum disulfide, followed by the fabrication of electrical devices is presented in this manuscript. The exfoliation method is based on the use of an aprotic solvent, namely, acetonitrile under mild sonication steps. In order to fabricate devices, a dielectrophoresis technique is used for transferring MoS flakes site-specifically on to the electrode pairs pre-written on the glass chips. The devices fabricated thus can be operated as chemical sensor in liquids while investigations under photo illumination indicate that such devices can also efficiently function as photodetectors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/3/1.4820423.html;jsessionid=q-qQ9L4h4XM8n8-2sgmfLbmB.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/3/10.1063/1.4820423&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/1/3/10.1063/1.4820423&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/1/3/10.1063/1.4820423'
Top,Right1,Right2,Right3,