Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
2. R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, and F. Zamora, Nanoscale 3, 20 (2011).
3. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
4. A. Geim and K. Novoselov, Nature Mater. 6, 183 (2007).
5. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
6. P. K. Ang, W. Chen, A. T. S. Wee, and K. P. Loh, J. Am. Chem. Soc. 130, 14392 (2008).
7. Y.-W. Son, M. Cohen, and S. Louie, Phys. Rev. Lett. 98, 089901 (2007).
8. M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
9. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London) 459, 820 (2009).
10. G. Giovannetti, P. Khomyakov, G. Brocks, P. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
11. J. K. Ellis, M. J. Lucero, and G. E. Scuseria, Appl. Phys. Lett. 99, 261908 (2011).
12. S. Han, H. Kwon, S. Kim, S. Ryu, W. Yun, D. Kim, J. Hwang, J. S. Kang, J. Baik, H. Shin, and S. Hong, Phys. Rev. B 84, 045409 (2011).
13. B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
14. F. Schwierz, Nat. Nanotechnol. 6, 135 (2011).
15. Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett. 12, 1136 (2012).
16. H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, Small Weinheim an Der Bergstrasse Germany 8, 63 (2012).
17. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
18. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6, 74 (2012).
19. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).
20. M. B. P. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, and M. Paranjape, Sci. Rep. 3, 1634 (2013).
21. L. Liu, S. B. Kumar, Y. Ouyang, and J. Guo, IEEE Trans. Electron Devices 58, 3042 (2011).
22. Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11, 3768 (2011).
23. L. S. Byskov, M. Bollinger, J. K. Nørskov, B. S. Clausen, and H. Topsøe, J. Mol. Catal. A: Chem. 163, 117 (2000).
24. A. O. Neill, U. Khan, and J. N. Coleman, Chem. Mater. 24, 2414 (2012).
25. Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen, and J. Y. Lee, J. Mater. Chem. A 1, 2202 (2013).
26. K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, Nano Lett. 12, 1538 (2012).
27. A. Castellanos-Gomez, M. Barkelid, A. M. Goossens, V. E. Calado, H. S. J. Van Der Zant, and G. A. Steele, Nano Lett. 12, 3187 (2012).
28. Y. Shi, W. Zhou, A. Lu, W. Fang, Y. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. Li, J. Idrobo, and J. Kong, Nano Lett. 12, 2784 (2012).
29. T. Kurkina, S. Sundaram, R. S. Sundaram, F. Re, M. Masserini, K. Kern, and K. Balasubramanian, ACS Nano 6, 5514 (2012).
30. B. R. Burg and D. Poulikakos, J. Mater. Res. 26, 1561 (2011).
31. F. R. Gamble, J. H. Osiecki, M. Cais, R. Pisharody, F. J. Disalvo, and T. H. Geballe, Science 174, 493 (1971).
32. W. M. Divigalpitiya, R. F. Frindt, and S. R. Morrison, Science 246, 369 (1989).
33. J. P. Lemmon and M. M. Lerner, Chem. Mater. 6, 207 (1994).
34. M. N. Tahir, N. Zink, M. Eberhardt, H. A. Therese, U. Kolb, P. Theato, and W. Tremel, Angew. Chem., Int. Ed. 45, 4809 (2006).
35. G. G. Ruiz-Hitzky Eduardo, J. Ricardo, C. Blanca, M. Victor, and S. A. Angelica, Adv. Mater. 5, 738 (1993).
36. E. Benavente, M. A. S. Ana, F. Mendiza, and G. Gonza, Coord. Chem. Rev. 224, 87 (2002).
37. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, Adv. Mater. 23, 3944 (2011).
38. V. Sanchez, E. Benavente, M. A. S. Ana, and G. Gonzalez, Chem. Mater. 11, 2296 (1999).
39. G. Gonzáleza, A. M. A. Santa, and E. Benavente, Electrochim. Acta 43, 1327 (1998).
40. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 331, 568 (2011).
41. K. E. Dungey, M. D. Curtis, and J. E. Penner-hahn, Chem. Mater. 10, 2152 (1998).
42.See supplementary material at for the chemical exfoliation of MoS2 flakes in other solvents, methods for structural characterization, details of dielectrophoretic deposition over different substrates and methods for device charcaterization. [Supplementary Material]
43. A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund Jr., and K. I. Bolotin, Solid State Commun. 155, 49 (2013).
44. R. Coehoorn, C. Haas, J. Dijkstra, and C. J. F. Flipse, Phys. Rev. B 35, 6195 (1987).
45. Y. Fong and M. Schlüter, Electrons and Phonons in Layered Crystal Structures (Reidel, Dordrecht, 1979), p. 145.
46. A. Molina-Sanchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, Phys. Rev. B 88, 045412 (2013).
47. K. Lee, H.-Y. Kim, M. Lotya, J. N. Coleman, G.-T. Kim, and G. S. Duesberg, Adv. Mater. 23, 4178 (2011).
48. S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, Nano Lett. 10, 92 (2010).
49. M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2010).
50. R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, Nature (London) 434, 1085 (2005).
51. V. Pachauri, K. Kern, and K. Balasubramanian, Appl. Phys. Lett. 102, 023501 (2013).
52. A. Ortiz-Konde, F. J. Garcia Sanchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, Microelectron. Reliab. 42, 583 (2002).
53. S. M. Sze and K. K. Nag, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2007).
54. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, Nat. Nanotechnol. 3, 486 (2008).
55. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, Nano Lett. 9, 1742 (2009).

Data & Media loading...


Article metrics loading...



A solution-based exfoliation method for obtaining large-area two-dimensional flakes of molybdenum disulfide, followed by the fabrication of electrical devices is presented in this manuscript. The exfoliation method is based on the use of an aprotic solvent, namely, acetonitrile under mild sonication steps. In order to fabricate devices, a dielectrophoresis technique is used for transferring MoS flakes site-specifically on to the electrode pairs pre-written on the glass chips. The devices fabricated thus can be operated as chemical sensor in liquids while investigations under photo illumination indicate that such devices can also efficiently function as photodetectors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd