1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Interface-dependent nucleation in nanostructured layered composites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/3/10.1063/1.4820424
1.
1. R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, Science 303, 989990 (2004).
http://dx.doi.org/10.1126/science.1093711
2.
2. D. D. Gandhi, M. Lane, Y. Zhou, A. P. Singh, S. Nayak, U. Tisch, M. Eizenberg, and G. Ramanath, Nature (London) 447, 299 (2007).
http://dx.doi.org/10.1038/nature05826
3.
3. X. Y. Nie, P. Zhang, A. M. Weiner, and Y.-T. Cheng, Nano Lett. 5, 19921996 (2005).
http://dx.doi.org/10.1021/nl051460z
4.
4. O. Anderoglu, A. Misra, H. Wang, and X. Zhang, J. Appl. Phys. 103, 094322 (2008).
http://dx.doi.org/10.1063/1.2913322
5.
5. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M. F. Hundley, and X. Zhang, Appl. Phys. Lett. 93, 083108 (2008).
http://dx.doi.org/10.1063/1.2969409
6.
6. W. Z. Han, M. J. Demkowicz, E. G. Fu, Y. Q. Wang, and A. Misra, Acta Mater. 60, 63416351 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.08.009
7.
7. A. Misra and R. G. Hoagland, Encyclopedia of Nanoscience and Nanotechnology, edited by Hari Singh Nalwa (American Scientific Publishers, 2010), Vol. 10.
8.
8. N. A. Mara, D. Bhattacharyya, J. P. Hirth, P. Dickerson, and A. Misra, Appl. Phys. Lett. 97, 021909 (2010).
http://dx.doi.org/10.1063/1.3458000
9.
9. A. Misra, J. P. Hirth, and R. G. Hoagland, Acta Mater. 53, 48174824 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.06.025
10.
10. K. Yu-Zhang, J. D. Embury, K. Han, and A. Misra, Philos. Mag. 88, 25592567 (2008).
http://dx.doi.org/10.1080/14786430802380485
11.
11. A. F. Voter, Los Alamos Unclassified Technical Report No. LA-UR 93-3901, 1993.
12.
12. R. Johnson and D. J. Oh, J. Mater. Res. 4, 1195 (1989).
http://dx.doi.org/10.1557/JMR.1989.1195
13.
13. M. J. Demkowicz and R. G. Hoagland, Int. J. Appl. Mech. 01, 421442 (2009).
http://dx.doi.org/10.1142/S1758825109000216
14.
14. F. C. Frank, Report of the Symposium on the Plastic Deformation of Crystalline Solids (Carnegie Institute of Technology, 1950).
15.
15. B. A. Bilby, Report of the Conference on Defects in Crystalline Solids (Physical Society, London, 1955), p. 124.
16.
16. J. Wang et al., J. Mater. Res. 28, 16461657 (2013).
http://dx.doi.org/10.1557/jmr.2013.34
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4820424 for description of MD methods; estimation of the critical angle; for extended version of Eq. (5); methods and results (Table S1) of interface energy change after nucleation; supporting data for Fig. 3; and the Thompson tetrahedron. [Supplementary Material]
18.
18. Z. Q. Wang, I. J. Beyerlein, and R. LeSar, Int. J. Plast. 25, 2648 (2009).
http://dx.doi.org/10.1016/j.ijplas.2008.01.006
19.
19. Z. Q. Wang and I. J. Beyerlein, Int. J. Plast. 27, 14711484 (2011).
http://dx.doi.org/10.1016/j.ijplas.2010.08.011
20.
20. M. J. Demkowicz, R. G. Hoagland, and J. P. Hirth, Phys. Rev. Lett. 100, 136102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136102
21.
21. R. F. Zhang, J. Wang, I. J. Beyerlein, and T. C. Germann, Scr. Mater. 65, 10221025 (2011).
http://dx.doi.org/10.1016/j.scriptamat.2011.09.008
22.
22. R. F. Zhang, J. Wang, I. J. Beyerlein, A. Misra, and T. C. Germann, Acta Mater. 60, 28552865 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.01.050
23.
23. J. Wang, K. Kang, R. F. Zhang, S. J. Zheng, I. J. Beyerlein, and N. A. Mara, JOM 64, 12081217 (2012).
http://dx.doi.org/10.1007/s11837-012-0429-7
24.
24. R. F. Zhang, T. C. Germann, X. Y. Liu, J. Wang, and I. J. Beyerlein, Scr. Mater. 68, 114117 (2013).
http://dx.doi.org/10.1016/j.scriptamat.2012.09.022
25.
25. M. J. Demkowicz and R. G. Hoagland, J. Nucl. Mater. 372, 4552 (2008).
http://dx.doi.org/10.1016/j.jnucmat.2007.02.001
26.
26. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Krieger Publishing Company, Malabar, 1992).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4820424
Loading
/content/aip/journal/aplmater/1/3/10.1063/1.4820424
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/3/10.1063/1.4820424
2013-09-16
2014-09-18

Abstract

Nanocomposite properties are to a large extent governed by interface-associated mechanisms. Via atomic-scale modeling of bi-phase interfaces, we reveal a strong correlation between interface structure and the nucleation of dislocations. We show that the number and types of dislocations that are emitted depend sensitively on a few key structural features of the interface. Based on these insights, a model is developed that connects nucleation propensity with interface structure. This finding implies that tuning interface structure is a conceivable approach for strengthening nanocomposites, one that is distinct from the common strategy of shrinking nanostructure dimensions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/3/1.4820424.html;jsessionid=1p6uvtuusjkqa.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/3/10.1063/1.4820424&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interface-dependent nucleation in nanostructured layered composites
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4820424
10.1063/1.4820424
SEARCH_EXPAND_ITEM