Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. S. Ginger and N. C. Greenham, J. Appl. Phys. 87(3), 1361 (2000).
2. D. Yu, C. Wang, and P. Guyot-Sionnest, Science 300, 1277 (2003);
2.Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, and M. Law, Nano Lett. 10, 1960 (2010).
3. M. V. Kovalenko, M. Scheele, and D. V. Talapin, Science 324, 1417 (2009).
4. M. Jarosz, V. J. Porter, B. R. Fisher, M. A. Kastner, and M. G. Bawendi, Phys. Rev. B 70, 195327 (2004);
4.V. J. Porter, S. Geyer, J. E. Halpert, M. A. Kastner, and M. G. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
5. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature (London) 442, 180 (2006).
6. G. Konstantatos and E. H. Sargent, Proc. IEEE 97(10), 1666 (2009);
6.S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, Nature Photon. 5, 489 (2011).
7. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, Science 310, 462 (2005);
7.E. J. D. Klem, D. D. MacNeil, P. W. Cyr, L. Levina, and E. H. Sargent, Appl. Phys. Lett 90, 183113 (2007);
7.P. V. Kamat, J. Phys. Chem. C 112, 18737 (2008);
7.J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, Nano Lett. 8, 3488 (2008);
7.B. Sun, A. T. Findikoglu, M. Sykora, D. J. Werder, and V. I. Klimov, Nano Lett. 9(3), 1235 (2009).
8. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7(6), 1793 (2007).
9. S. Rühle, M. Shalom, and A. Zaban, ChemPhysChem 11, 2290 (2010);
9.P. V. Kamat, J. Phys. Chem. Lett. 4, 908 (2013).
10. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, Nature Photon. 2, 247 (2008).
11. D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, Appl. Phys. Lett. 87, 213505 (2005).
12. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, Nature Mater. 4, 138 (2005).
13. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 16, 1009 (2004);
13.W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, J. Phys. Chem. B 109, 9505 (2005);
13.I. Gur, N. A. Fromer, C.-P. Chen, A. G. Kanaras, and A. P. Alivisatos, Nano Lett. 7(2), 409 (2007);
13.E. H. Sargent, Nature Photon. 3, 325 (2009);
13.K. M. Noone, E. Strein, N. C. Anderson, P.-T. Wu, S. A. Jenekhe, and D. S. Ginger, Nano Lett. 10, 2635 (2010).
14. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, Chem. Rev. 110, 389 (2010).
15. H.-Y. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, Nat. Nano. 3(9), 543 (2008);
15.T. P. Osedach, N. Zhao, S. Geyer, L.-Y. Chang, D. D. Wanger, A. C. Arango, M. G. Bawendi, and V. Bulovic, Adv. Mater. 22, 5250 (2010).
16. V. Wood, J. E. Halpert, M. J. Panzer, M. G. Bawendi, and V. Bulović, Nano Lett. 9, 2367 (2009).
17.See supplementary material at for additional experimental details and supporting data. [Supplementary Material]
18. J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, J. Appl. Phys. 85(11), 7884 (1999).
19. M. Grätzel, Nature (London) 414, 338 (2001);
19.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595 (2010).
20. S. Ardo and G. J. Meyer, Chem. Soc. Rev. 38, 115 (2009).
21. T. A. Heimer, S. T. D’Arcangelis, F. Farzad, J. M. Stipkala, and G. J. Meyer, Inorg. Chem. 35, 5319 (1996);
21.R. Argazzi, C. A. Bignozzi, T. A. Heimer, and G. J. Meyer, Inorg. Chem. 36, 2 (1997);
21.F. Liu and G. J. Meyer, Inorg. Chem. 44, 9305 (2005).
22. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006);
22.N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, J. Phys. Chem. C 113, 4208 (2009).
23. E. Traversa and A. Bearzotti, Sens. Actuators B 23, 181 (1995);
23.X. L. Cheng, H. Zhao, L. H. Hso, S. Gao, and J. G. Zhao, Sens. Actuators B 102, 248 (2004);
23.W. K. Liu, G. M. Salley, and D. R. Gamelin, J. Phys. Chem. B 109, 14486 (2005).
24. W. Walukiewicz, Physica B 302-303, 123 (2001).
25. A. Pourret, P. Guyot-Sionnest, and J. W. Elam, Adv. Mater. 21, 232 (2009).
26. K. Szendrei, F. Cordella, M. V. Kovalenko, M. Boberl, G. Hesser, M. Yarema, D. Jarzab, O. V. Mikhnenko, A. Gocalinska, M. Saba, F. Quochi, A. Mura, G. Bongiovanni, P. W. M. Blom, W. Heiss, and M. A. Loi, Adv. Mater. 21(6), 683 (2009).
27. T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, Nature Photon. 3, 332 (2009).

Data & Media loading...


Article metrics loading...



We report a new type of solution-processed photoconductive film based on embedding photosensitizers (semiconductor nanocrystals or ruthenium dye molecules) within conductive ZnO sol-gel matrices. Mixing photosensitizers directly with sol-gel precursors prior to film deposition yields highly colored ZnO films containing well-dispersed sensitizers. These films show internal photoconductivity quantum efficiencies up to ∼50% and photoresponses over 100 mA/W with visible photoexcitation, competitive with other more complex photodetectors reported recently. This simple motif is attractive for the development of robust sensitized-oxide photodetectors and for fundamental studies of photoinduced charge separation from a variety of molecular or quantum dot sensitizers into conductive oxides.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd